Intelligent Drivesystems, Worldwide Services

Contenu

INTRODUCTION

DESCRIPTIF DES RÉDUCTEURS

CHOIX DU RÉDUCTEUR

OPTIONS

LUBRIFIANTS

NORMES, DIRECTIVES SPÉCIFICITÉS

NIVEAUX D'HUILE

PEINTURE

VUE D'ENSEMBLE DES PUISSANCES ET VITESSES

TABLEAUX DES PUISSANCES ET RAPPORTS DE RÉDUCTION

DESSINS COTÉS

ANNEXE

www.nord.com

Présence à l'échelle mondiale

- NORD a ses propres filiales dans 35 pays
- Avec des représentations, NORD est présent dans plus de 52 pays
- Partenaires de services et de vente

NORD DRIVESYSTEMS avec son siège à Bargteheide et ses filiales dans 35 pays est une entreprise active dans le monde entier avec une gamme étendue de produits et de prestations pour la technique d'entraînement électrique. mécanique et électronique.

Avec env. 3000 employés dans ses usines en Allemagne et à l'étranger, NORD produit et commercialise la technique d'entraînement pour le marché mondial.

- Assistance technique
- Assistance à l'installation et à la mise en service
- Gestion des pièces de rechange

En élaborant des solutions d'entraînement spécifiques aux applications de ses clients et en les accompagnant depuis la conception jusqu'à la mise en service, NORD est devenu un partenaire fort et fiable.

Un service 24 heures, une disponibilité rapide et toujours à proximité du client de même qu'une responsabilité et un engagement sont exactement ce que l'on attend d'une entreprise telle que NORD.

SITES DE PRODUCTION - ALLEMAGNE

Usine principale NORD Bargteheide

NORD Electronic DRIVESYSTEMS Usine de fabrication d'engrenages Technique de fabrication NORD **NORD Glinde**

EXTRAIT - SITES DE PRODUCTION - À L'ÉTRANGER

Vieux Thann **France**

Nowa Sol Pologne

Waunakee, Wisconsin États-Unis

Suzhou Chine

Introduction

Introduction du catalogue G1000 IE2

Directive européenne sur l'écoconception

En octobre 2009, la directive européenne 2009/125/CE en matière d'écoconception est entrée en vigueur. Elle détermine le cadre de la conception écologique des produits consommant de l'énergie. Le règlement 640/2009/CE s'applique au groupe de produits des moteurs électriques dans le domaine industriel. Selon ce règlement, à partir du 16 juin 2011, seuls les moteurs électriques dont la plage de puissances est comprise entre 0,75 kW et 375 kW peuvent être commercialisés pour des applications spécifiques. Ces moteurs électriques doivent au moins correspondre à la classe de rendement IE2.

Référence IE

L'échelle de 3 classes IE (International Energy Efficiency Class) appliquée jusqu'à présent est définie dans la partie 30 de la norme CEI 60034 sur les machines électriques rotatives. La classification IE remplace le marquage antérieur avec les classes EFF.

De plus amples informations sont disponibles dans notre catalogue de moteurs M7000 et en ligne sur le site www.nord.com/IE2.

Contenu du catalogue G1000 IE2

Les moteurs indiqués dans ce catalogue correspondent à la classe de niveau de rendement IE2. Ceci comprend les moteurs avec une puissance de 0,55 kW, bien que la classe IE2 ne s'applique qu' à partir de la puissance 0,75kW.

Pour des raisons d'intégralité de produit, des moteurs non soumis à la norme IE2 avec des puissances de 0,12 kW à 0,37 kW sont également mentionnés. Les moteurs électriques avec de telles puissances ne sont cependant pas concernés par le règlement.

Modifications par rapport aux catalogues disponibles jusqu'à présent

Avec les classes de rendement, le nombre de types de moteurs électriques a été augmenté, d'où une description plus étendue. Pour les moteurs ainsi que les moteurs freins et les freins, un catalogue de moteurs électriques M7000 distinct révisé est désormais disponible.

De plus, les listes de pièces de rechange générales pour chaque gamme de réducteurs sont disponibles sous forme de brochures spécifiques et complétées par des dessins d'assemblage.

Veuillez nous contacter pour obtenir le catalogue et les différentes brochures.

Les catalogues et les brochures se trouvent également sur le site Internet de **NORD**, à l'adresse <u>www.nord.com</u> - rubrique **DOCUMENTATION**

Introduction

Optimisations techniques importantes

Ce catalogue G1000 IE2 contient pour l'essentiel la même gamme de produits que le catalogue G1000 IE1. Les optimisations indiquées ci-après sont possibles en combinaison avec les moteurs des classes de rendement IE2 et IE1, ainsi que les moteurs soumis à d'autres réglementations.

- Dans le cas du type de réducteur à couple conique SK 9052.1, un nouveau carter à pattes avec des alésages de palier plus grands permet à présent de livrer en supplément la version à pattes AX et les versions à pattes et bride AXZ et AXF avec le diamètre d'arbre creux de sortie de 70 mm. En raison du nouveau carter à pattes, le gabarit de perçage B14 côté sortie est modifié pour la version à pattes et bride SK 9052.1 AXZ et VXZ. La modification du diamètre extérieur sur l'épaulement de l'arbre plein de sortie entraîne une légère réduction de l'effort radial maximal autorisé F_R avec certaines vitesses. Avec un diamètre d'arbre creux inférieur (60mm.), il est possible d'augmenter l'effort radial autorisé. Ces extensions s'appliquent également
- Dans le cas du type de réducteur à couple conique SK 9016.1, le diamètre d'arbre creux de sortie de 35 mm peut être fourni en supplément en tant que standard. Les modifications s'appliquent également pour le type de réducteur à couple conique à 4 étages SK 9017.1 (⇒ □ D75).

pour le type de réducteur à couple conique à 4 étages SK 9053.1 ⇒ □ D88 + D90.

- Dans le cas des types de réducteurs à arbres parallèles de grande taille SK 10282 à SK 12382 et des types de réducteurs à couple conique SK9092.1 et SK9096.1, outre la version à frette de serrage, des arbres creux de sortie avec clavettes peuvent être également fournis en tant standard.
 (Réducteur à arbres parallèles ⇒ □ C96-100, réducteur à couple conique ⇒ □ D98-101)
- Dans le cas du type de réducteur à arbres parallèles SK 4282, une bride de sortie avec un diamètre de bride de 250 mm peut également être livrée en supplément en tant que standard. Les modifications s'appliquent aussi pour le type de réducteur à arbres parallèles à 3 étages SK 4382 (⇒ □ C84-85).
- Dans le cas des types de réducteurs à arbres parallèles de grande taille SK 10282 à SK 12382, outre les roulements et arbre de sortie renforcés, la version standard des roulements et arbre de sortie peut également être livrée en supplément en tant que standard.
 Veuillez tenir compte à ce sujet de l'explication technique ⇒ □A30.
- Pour les types de réducteur à engrenages cylindriques à 1 étage SK11E à SK51E, des roulements et arbre de sortie renforcés peuvent être livrés en option en variante à la version normale.
- Dans les listes de puissances et de vitesses, la plage de puissance a été étendue vers le haut pour certains motoréducteurs de manière à fournir des combinaisons de moteurs réducteurs supplémentaires.
- L'optimisation a permis d'augmenter le facteur de service pour certaines vitesses.

Moteurs de la classe de rendement IE1, moteurs non concernés par la nouvelle réglementation et moteurs spécifiques

NORD continue bien sûr la livraison de ce type de moteurs au prix inférieur à celui de l'IE2 pour tous les cas d'utilisation qui ne sont pas concernés par les directives indiquées précédemment. Ces moteurs sont énumérés dans le catalogue **G1000 IE1**.

Vous avez besoin de moteurs spécifiques dont la plage de puissances est comprise entre 0,12 kW et 0,37kW et qui correspondent à la classe de rendement IE2 ? Nous avons ce qu'il vous faut ! Nous vous apportons les solutions idéales - n'hésitez pas à nous contacter !

Présentation du produit et le catalogues

Réducteur à engrenages cylindriques (catalogue G1000)

- ✓ Version à pattes ou bride
- Carter monobloc

Tailles	11
kW	0,12 – 160
Nm	23 – 23.160
i	1,24:1 – 14.340,31:1

Réducteur à arbres parallèles (catalogue G1000)

- Version embrochable, à pattes ou bride
- Arbre creux ou plein
- Version courte
- ✓ Carter monobloc

Tailles	15
kW	0,12 – 200
Nm	65 – 90.000
i	4,03:1 – 6.616,79:1

Réducteur à roue et vis (catalogue G1000)

- ✓ Version embrochable, à pattes ou bride
- ✓ Arbre creux ou plein
- ✓ Carter monobloc

Tailles	6
kW	0,12 – 15
Nm	46 – 3.090
i	4,40:1 - 7.095,12:1

Réducteur à couple conique à 2 étages (catalogue G1000)

- ✓ Jusqu'à 97 % de rendement
- ✓ Version embrochable, à pattes ou bride
- ✓ Arbre creux ou plein
- ✓ Alternative aux motoréducteurs à roue et vis
- ✓ Carter monobloc

Tailles	5
kW	0,12 – 9,2
Nm	45 – 650
i	3,85:1 – 72,31:1

Réducteur à couple conique à 3 étages (catalogue G1000)

- ✓ Jusqu'à 95 % de rendement
- ✓ Version embrochable, à pattes ou bride
- ✓ Arbre creux ou plein
- ✓ Carter monobloc

Tailles	11
kW	0,12 – 200
Nm	180 – 50.000
i	8,04:1 - 13.432,68:1

Plus de puissance, moins de poids – le nouveau réducteur à couple conique de NORD DRIVESYSTEMS.

Réducteur à couple conique à deux étages (catalogue G1014)

- ✓ Jusqu'à 97 % de rendement
- ✓ Version embrochable, à pattes ou bride
- Arbre creux ou plein
- Carter monobloc
- ✓ Carter en aluminium coulé sous pression

Tailles	5
kW	0,12 – 9,2
Nm	90 – 660
i	3,55:1 – 70:1

Réducteur à engrenages cylindriques NORD-BLOC.1 (catalogue G1012)

- ✓ Version à pattes ou bride
- Carter en aluminium coulé sous pression (5 tailles)
- Carter monobloc
- ✓ Dimensions standard de l'industrie

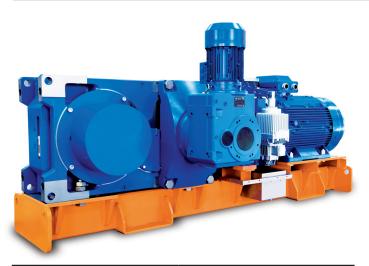
Tailles	8
kW	0,12 – 37
Nm	55 – 3.300
i	2,10:1 – 456,77:1

Réducteur à roue et vis SI (catalogue G1035)

- Modulaire
- ✓ Possibilités de fixation universelles
- ✓ Exécution CEI

Excoation del	•
Tailles	5
kW	0,12 – 4,0
Nm	21 – 427
i	5,00:1 - 3.000,00:1

Réducteur à roue et vis SMI (catalogue G1035)


- ✓ Surfaces lisses
- ✓ Niveau d'huile permanent

'	
Tailles	4
kW	0,12 – 1,5
Nm	21 – 246
i	5,00:1 - 540,0:1

Présentation du produit et le catalogues

Réducteur industriel (catalogue G1050)

- ✓ Tous les éléments de palier et surfaces étanches sont usinés lors d' une seule phase d'usinage.
- Pas de plan de joint dans le carter, et par conséquent pas de surfaces étanches soumises au couple
- Précision axiale maximale, d'où un fonctionnement peu bruyant
- Longue durée de vie avec intervalles de maintenance allongés
- Position de montage courte et compacte
- Rapport de transmission de 5,54 à 400 : 1 dans le même carter (cotes fonctionnelles identiques)
- √ Réducteurs à arbres parallèles et à couple conique

Tailles	4
kW	2,2 – 1.000
kNm	60/90/135/200
İ	5,54:1 – 1.600,00:1

Moteurs IE2/IE3 et composants de la commande d'entraînement décentralisée (catalogue M7000)

Moteurs électriques avec une exécution à 1 et 3 phases, jusqu'à 200 kW.

Une plus large gamme de démarreurs et composants de la commande d'entraînement décentralisée.

SK 200E (F3020)

- ✓ "Arrêt sécurisé" conformément à EN 954-1
- Mise en service possible par le biais de commutateurs DIP et de potentiomètres
- ✓ Économie d'énergie
- Systèmes BUS basés sur Ethernet
- ✓ Niveau de performance adapté à l'application
- Modules décentralisés dans la connexion système
- ✓ Commande de positionnement intégrée « Posicon »
- Exécutions intégrées de l'interface AS

Tailles	4
U[V]	1~100 120±10% 1~200 240±10% 3~200 240±10% 3~380 500 -20% / +10%
P[kW]	0,25 – 22

SK 500E (F3050)

- Structure compacte
- ✓ Économie d'énergie
- Niveaux de performance adaptés à l'application (par ex. commande de positionnement "Posicon")
- Modules à enficher pour la commande et la communication (bus de terrain)
- Systèmes BUS basés sur Ethernet

Tailles	10
U[V]	1~110 120±10% 1/3~200 240±10% 3~200 240±10% 3~380 480 -20% / +10%
P[kW]	0,25 – 132*

^{*} à partir de 3 trimestre de 2012

SK 700E (F3070)

- Flexibilité en raison de cartes de modules de fonctionnement échangeables (par ex. commande de positionnement "Posicon")
- Modules à enficher pour la commande et la communication (bus de terrain)
- ✓ Modules à auto-détection
- Divers systèmes de bus de terrain

Tailles	8
U[V]	3~380 480-20% / +10%
P[kW]	1,5 – 160

Contenu

DESCRIPTIF DES RÉDUCTEURS Réducteur à engrenages cylindriques Réducteur à arbres parallèles Réducteur à couple conique Réducteur à roue et vis Lanterne W et IEC Poids maximum admissible pour le moteur Console moteur MK	Α	8 9 9 10 10	(8) (8) (9) (9) (10) (10)
POSITION DE MONTAGE VERTICALE Installation à l'extérieur, utilisation en ambiance tropicale. Conditions ambiantes particulières Stockage avant la mise en service. Évent Réducteur double Entraînements pour aérateurs, agitateurs, mélangeurs et ventilateurs	A A A	11 11 11 11	(11) (11) (11) (11) (11) (11)
CHOIX DU RÉDUCTEUR Critères	A A A	12 13 15	(48) (48) (48) (48) (48)
OPTIONS Vue d'ensemble Options de montage Options d'arbre Butée caoutchouc Frettes de serrage Éléments de fixation Roulements et arbre de sortie renforcés VL2/VL3 Antidévireur, sens de rotation Lanterne pour le montage de servomoteurs Lanterne de montage avec arbre d'entrée libre Consoles moteur Refroidissement par l'eau.	A A A A A A A A A A	18 19 20 21 22 27 30 31 33 34 39	(18) (19) (20) (21) (22) (27) (30) (31) (33)
LUBRIFIANTS Refroidisseur d'huile Réservoir d'expansion d'huile Réservoir de niveau d'huile Types de lubrifiants	A	44 45	(43) (44) (45) (47)

Contenu

NORMES, DIRECTIVES, SPÉCIFICITÉS	A 40	(10)
Spécificités	A 48	(48)
Informations relatives aux dessins cotés	A 52	(52)
Tolérances	A 53	(53)
Abréviations	A 53	(53)
Structure des tableaux de puissance et		
des rapports de réduction	A 54	(54)
Position des arbres, brides, bras de réaction et frettes		
de serrage pour les réducteurs perpendiculaires	A 56	(56)
Boîte à bornes et entrée de câbles	A 57	(57)
Positions de montage	A 59	(59)
Symboles des vis d'huile dans les positions de montage	A 60	(60)
NIVEAUX D'HUILE		
	A 66	(66)
Réducteur à engrenages cylindriques		(,
Réducteur à arbres parallèles	A 68	(68)
Réducteur à couple conique	A 70	(70)
Réducteur à roue et vis	A 72	(72)
PEINTURE	A 74	(74)
RÉDUCTEUR À ENGRENAGES CYLINDRIQUES		
Formulaire	B 2	(76)
Exécutions livrables	B 3	(77)
LAGGRIGHT HYRICO	2 0	(11)

Réducteur à couple conique	A 70 (70) A 72 (72)
PEINTURE	A 74 (74)
RÉDUCTEUR À ENGRENAGES CYLINDRIQUES Formulaire Exécutions livrables Données du motoréducteur Dessins cotés Options	B 2 (76) B 3 (77) B 4 (78) B 63 (137) B 98 (172)
RÉDUCTEUR À ARBRES PARALLÈLES Formulaire Exécutions livrables Données du motoréducteur Dessins cotés Options	C 2 (174) C 3 (175) C 4 (176) C 70 (242) C110 (282)
RÉDUCTEUR À COUPLE CONIQUE Formulaire Exécutions livrables Données du motoréducteur Dessins cotés Options	D 2 (292) D 3 (293) D 4 (294) D 58 (348) D110 (400)
RÉDUCTEUR À ROUE ET VIS Formulaire Exécutions livrables Données du motoréducteur Dessins cotés Options	E 2 (410) E 3 (411) E 4 (412) E 32 (440) E 58 (466)
ANNEXE Formulaires généraux	
Vue d'ensemble des moteurs	F 4 (472)

Les réducteurs NORD ont été conçus selon le principe du carter monobloc. Ce concept s'applique à toutes les exécutions de réducteurs, à pattes, à bride et arbre creux.

Par carter monobloc, nous désignons un carter fait d'une seule pièce de fonderie dans lequel sont intégrés tous les paliers. L'opération de finition de ce bloc carter est effectuée dans un dispositif de serrage, sur les machines CNC les plus modernes. Une précision, une rigidité et une résistance maximales caractérisent la conception du carter monobloc. Il n'existe aucun joint de séparation entre le côté sortie et le carter de réducteur qui pourrait être soumis à un couple ou un effort radial.

Les carters sont réalisés en fonte grise ou en fonte d'aluminium. Fonte à graphite sphéroïdal disponible sur demande.

Les pignons et roues sont en acier fortement allié, les dentures sont cémentées (à l'exception des réducteurs à roue et vis).

Des géométries optimales de la denture ainsi que l'alignement précis de l'arbre grâce au principe de carter monobloc permettent d'obtenir une capacité de charge maximale, une longue durée de vie et un faible niveau de bruit. Les dentures, les paliers et les arbres sont calculés selon les normes DIN 3990, DIN ISO 281 ou Niemann pour toutes les puissances et vitesses proposées dans le catalogue. Tous les réducteurs NORD offrent, par conséquent, un maximum de sécurité et de fiabilité.

Les paliers et roues dentées fonctionnent dans un bain d'huile. En plus de la liaison par clavettes, un assemblage serré entre l'arbre et le moyeu est réalisé.

Des bagues d'étanchéité en NBR sont utilisées. En option, des bagues d'étanchéité en FKM (VITON) sont également disponibles.

Réducteur à engrenages cylindriques

Les réducteurs à engrenages cylindriques à 2 étages avec arbres moteur et de sortie coaxiaux sont disponibles en

11 tailles (SK 02 ... SK102). Les tailles 0 à 5 peuvent être livrés avec un module supplémentaire de réduction pour des rapports plus élevés, type SK03 à SK53.

A parir de la taille 6 (SK62 - SK63),le carter est identiques pour les versions à 2 et 3 trains.

Des réducteurs combinés avec 4 et 5 trains d'engrenages sont également réalisables.

Les réducteurs à engrenages cylindriques peuvent être fournis dans des versions à pattes et à bride. Pour l'exécution à bride celle-ci est directement moulée, pas de la fixation par vis de la bride sur le carter.

Réducteur à engrenages cylindriques

- de 0,12 à 200 kW
- jusqu'à 23.000 Nm
- 11 tailles

Réducteur à arbres parallèles

Le désaxage parallèle dans le cas des réducteurs à arbres parallèles réduit la longueur de construction par rapport aux réducteurs à engrenages cylindriques et permet, en version embrochable à

arbre creux transversal, un montage direct sur l'arbre d'entraînement de la machine. Les réducteurs SK 5282 sont disponibles dans une version à 2 étages. Les réducteurs SK 1382NB ... SK 5382 sont exécutés avec 3 étages pour des rapports de réduction plus élevés, pour SK 2382 ... SK5382 avec d'un carter supplémentaire. À partir de la taille de réducteur à arbres parallèles SK 6282/ SK 6382, les réducteurs sont fabriqués en version à 2 et 3 étages avec le même carter.

Les réducteurs à arbres parallèles sont disponibles en trois variantes, avec au choix un arbre creux ou plein :

- 1) Avec bras de réaction, sans bride de centrage
- 2) Version à bride, avec bride B14 usinée ou bride B5 rappotée.
- 3) Version à pattes

Réducteur à arbres parallèles

- de 0,12 à 200 kW
- jusqu'à 90.000 Nm
- 15 tailles

Réducteur à couple conique

Les réducteurs à couple conique sont des réducteurs orthogonaux dans lesquels l'arbre moteur et l'arbre de sortie forment un angle de 90°. Une disposition avantageuse de l'entraînement en

résulte. Les réducteurs à couple conique NORD ont toujours plusieurs étages.

Les étages se répartissent comme suit :

	2 étages	3 étages	4 étages
Étage à engrenages cylindriques			1er étage
Étage à engrenages cylindriques	1er étage	1er étage	2ème étage
Étage à couple conique	2ème étage	2ème étage	3ème étage
Étage à engrenages cylindriques		3ème étage	4ème étage

Les réducteurs à couple conique sont disponibles avec un antidévireur intégré.

La roue conique peut se trouver à gauche ou à droite du pignon conique, ce qui inverse le sens de rotation de l'arbre d'entrée et de l'arbre de sortie.

Réducteur à couple conique

- de 0,12 à 200 kW
- jusqu'à 50.000 Nm
- 16 tailles

Rendements η:

L'avantage essentiel des réducteurs à couple conique est leur rendement pratiquement constant sur l'ensemble du rapport de transmission. Ce rendement est le même que celui des réducteurs à engrenages cylindriques et arbres parallèles.

Réducteur à roue et vis

Les réducteurs à roue et vis sont des réducteurs orthogonaux dans lesquels l'arbre moteur et l'arbre de sortie forment un angle de 90°. Une dis-

position avantageuse de l'entraînement en résulte la plupart du temps. Les réducteurs à roue et vis présentés dans ce catalogue ont plusieurs étages. De plus, NORD propose des séries de réducteurs à vis à 1 étage, dans le catalogue G1035. Veuillez nous contacter pour obtenir le catalogue G1035.

Les engrenages cylindriques des réducteurs à roue et vis sont en acier fortement allié, les dentures sont cémentées. Des géométries optimales de denture ainsi que l'alignement précis de l'arbre grâce au principe de carter monobloc permettent d'obtenir une capacité de charge maximale, une longue durée de vie et un faible niveau de bruit.

L'étage à roue et vis sans fin a une vis cylindrique cémentée et une roue à vis sans fin sur laquelle est soudée une jante en bronze spécial. Cette association garantit une longue durée de vie. Grâce à l'utilisation de machines CNC les plus modernes et un contrôle permanent, nous offrons la meilleure qualité d'usinage possible, et ce, de manière constante.

Les réducteurs à roue et vis sont lubrifiés en série avec un lubrifiant synthétique haut de gamme et de longue durée, à base de polyglycol. Ce lubrifiant synthétique diminue le frottement de très hauts rendements et une longue durée de vie sont ainsi garantis.

Les réducteurs à roue et vis SK 02040 ... SK 42125 sont disponibles dans une version à 2 étages et peuvent être également livrés à 3 étages avec un carter additionnel pour des rapports de réduction plus élevés ; il s'agit alors des modèles SK 13050 ... SK 43125.

Réducteur à roue et vis

- de 0,12 à 15 kW
- jusqu'à 3.000 Nm
- 6 tailles

Rendements n:

Les réducteurs à roue et vis NORD atteignent des rendements allant jusqu'à 92%.

Étant donné que pour les réducteurs neufs, l'engrenage à vis doit se roder, le coefficient de frottement est tout d'abord plus élevé avant le rodage. Le rendement est donc légèrement inférieur avant le rodage. Cet effet augmente plus l'angle d'inclinaison est faible, en l'occurrence pour un petit nombre de filets de la vis.

Par expérience, les pertes suivantes sont escomptées :

1 filet jusqu'à env. 12%
2 filets jusqu'à env. 6%
3 filets jusqu'à env. 3%
6 filets jusqu'à env. 2%

Le nombre de filets de la vis est indiqué dans les tableaux des puissances et des rapports de réduction. Le rodage est terminé au bout de 25 heures de fonctionnement avec une charge maximale.

Afin d'atteindre les rendements indiqués dans les tableaux, les conditions suivantes doivent être remplies :

- Le réducteur doit être parfaitement rodé
- Le réducteur doit avoir atteint une température stable
- Le lubrifiant prescrit doit être utilisé
- Le réducteur doit fonctionner avec son couple nominal

Lanterne W et IEC

Pour les réducteurs avec arbre d'entrée libre de type W, il convient de tenir compte de la puissance d'entraînement maximale autorisée indiquée dans les tableaux de puissances et de rapports de réduction. Pour les réducteurs équipés de lanternes IEC, la puissance standard s'applique en fonction de la taille conformément à DIN EN 50347, en tenant compte toutefois de la puissance d'entraînement maximale autorisée indiquée dans les tableaux de puissances et de rapports de réduction.

Pour des vitesses supérieures à celles indiquées dans les tableaux de puissances et de rapports de réduction, des mesures spéciales sont éventuellement requises ; dans ce cas, veuillez nous consulter.

Pour les réducteurs avec arbre d'entrée libre de type W, le palier d'arbre d'entrée doit être régulièrement graissé, à partir de la taille SK 62 ou SK 6282 pour les réducteurs à 2 étages et à partir de la taille SK 73, SK 7382 ou SK 9072.1 pour les réducteurs à 3 étages. Nous recommandons de graisser le palier à roulement extérieur de l'arbre d'entrée environ toutes les 2 500 heures de service avec 20-25 g de graisse, en utilisant le graisseur prévu à cet effet. Types de graisse recommandés : Petamo GHY 133 N (société Klüber Lubrication). Un graisseur automatique peut également être livré sur demande. Un ventilateur de refroidissement du réducteur peut être livré en option. Il est monté sur l'arbre d'entrée W. Veuillez nous contacter.

Les réducteurs équipés d'une lanterne IEC ≥ 160 à partir de la taille SK 62 ou SK 6282 dans le cas des réducteurs à 2 étages et à partir de SK 73, SK 7382 ou SK 9072.1 pour les réducteurs à 3 étages possèdent un graisseur automatique qui alimente en lubrifiant le palier à roulement extérieur de l'arbre d'entrée. Le graisseur amène en permanence du lubrifiant sur le palier. Le graisseur contient 120 cm³ de graisse. Le graisseur automatique doit être activé avant la mise en service du réducteur et être remplacé tous les 12 mois. Ces données se basent sur un fonctionnement moyen ≤ 8 heures/jour. Pour des durées de fonctionnement supérieures, le remplacement doit avoir lieu tous les 6 mois. Le graisseur est conçu pour une utilisation normale, à une température ambiante comprise entre 0°C et 40°C. Si la tem-

pérature ambiante s'éloigne de cette valeur de référence pen-

dant de longues périodes, il est alors nécessaire d'utiliser des graisseurs spéciaux ; veuillez nous consulter dans ce cas.

Dans certaines conditions de fonctionnement, la lanterne IEC standard pour une taille de moteur ≥ 160 n'est pas appropriée en série pour des positions où le moteur est positionné à la verticale vers le haut. Un montage direct du moteur est alors impérativement recommandé!

La lanterne IEC verticale dans le cas d'une taille de moteur ≥ 160 (position de montage M2 ou M4) doit être contrôlée et validée par NORD en fonction des conditions de fonctionnement. Veuillez respecter ces consignes. Pour les configurations verticales avec le moteur orienté vers le bas (position de montage M2), il est possible que la durée de vie de l'étanchéité soit diminuée. Nous

vous recommandons d'observer des intervalles de

maintenance plus courts.

Les plus petits réducteurs équipés d'une lanterne IEC jusqu'à la taille SK 52 ou SK 5282 pour les réducteurs à 2 étages et jusqu'à la taille SK 63, SK 6382 ou SK 9052.1 pour les réducteurs à 3 étages possèdent des paliers spéciaux étanches et graissés à vie qui ne nécessitent aucune maintenance.

Pour les tailles de moteur 63 à 180, l'accouplement de la lanterne IEC n'est pas sécurisée à la rupture. (**Exception** : les lanternes IEC aux tailles 160 et 180 si le graisseur automatique est disponible. À partir de la lanterne IEC 200, les accouplements utilisés assurent une liaison à la rupture). Pour les dispositifs de levage, ascenseurs et autres applications pouvant présenter un danger pour les personnes, des mesures spécifiques sont nécessaires ; veuillez nous consulter si c'est le cas.


Par rapport au montage direct du moteur, la lanterne IEC possède un accouplement sur l'arbre additionnel ainsi que des paliers supplémentaires. Cette exécution entraîne des pertes plus importantes en marche à vide que dans le cas du montage direct du moteur. Nous recommandons de privilégier le montage direct du moteur, non seulement pour des raisons techniques, mais également pour des avantages économiques.

Poids maximum autorisés pour le moteur

Taille IEC	63	71	80	90	100	112	132
kg	25	30	40	50	60	80	100
Taille IEC	160	180	200	225	250	280	315
kg	200	250	350	500	700	1000	1500

Console moteur MK

L'utilisation de la console moteur MK offre de nouvelles possibilités pour la conception des machines et des installations. La console moteur est prévue pour être combinée avec tous les réducteurs NORD de

la gamme monobloc quelle que soit la position de montage.

Les consoles moteur NORD offrent aux utilisateurs les avantages importants suivants :

- Construction légère en aluminium, amortissant les vibrations
- Système de réglage en hauteur résistant à la corrosion et facile à manier pour une tension des courroies optimale
- · Eléments de fixation anticorrosion
- Utilisable quelle que soit la position de montage
- Rotation de 90° possible dans toutes les directions
- Proposition de rapports de réduction i = 1,0 selon le tableau ⇒ □A41
- Console moteur avec des trous de fixation prévus pour plusieurs tailles de moteur

Cinq tailles de consoles MK couvrent l'ensemble des combinaisons moteur-réducteur.

Pour connaître les différentes possibilités de montage, veuillez consulter les tableaux de sélection ⇒ ☐A41 qui sont également valables pour les réducteurs doubles correspondants.

Remarques pour les réducteurs et motoréducteurs

Réducteurs et motoréducteurs en position de montage verticale

Les réducteurs et motoréducteurs peuvent être montés avec des arbres en position verticale. (Exception : montage avec la lanterne IEC avec certaines tailles). Dans ces positions de montage, les réducteurs reçoivent une quantité spécifique d'huile et pour certains types, des paliers spéciaux étanches et graissés. Ces positions de montage provoquent des pertes plus conséquentes liées à un barbotage plus important du pignon d'attaque dans l'huile, induisant un échauffement supplémentaire des réducteurs (respecter la puissance thermique limite $\Rightarrow \square A12$).

Pour des positions de montage verticales avec le moteur vers le haut (position de montage M4) et des rapports de réduction < 20, nous préconisons **impérativement** l'utilisation d'un réservoir d'expansion d'huile pour éviter ainsi l'écoulement d'huile par l'évent. Veuillez nous consulter afin que nous puissions vous proposer la solution convenant le mieux à votre configuration d'entraînement.

Installation à l'extérieur, utilisation en ambiance tropicale

Si le matériel est installé à l'extérieur, dans des endroits humides ou tropicaux, une étanchéité appropriée et des mesures spécifiques contre la corrosion sont requises. Lors de la commande, veuillez préciser les conditions d'utilisation particulières.

Conditions ambiantes particulières

Des conditions ambiantes particulières sont par exemple :

- des substances agressives ou corrosives (de l'air contaminé, des gaz, des solutions acides et basiques, des sels, etc.) présentes dans l'environnement
- une humidité relative de l'air très élevée ou le contact du motoréducteur avec des liquides
- d'importantes salissures, de la poussière ou du sable en contact avec le motoréducteur
- des variations importantes de la pression atmosphérique
- des expositions aux rayonnements
- des températures ambiantes extrêmes ou des variations de température importantes
- des vibrations, des accélérations, des chocs, ou autres conditions ambiantes anormales

Dès la phase d'étude du projet, il est nécessaire de tenir compte des conditions ambiantes particulières même pendant le transport ou le stockage précédant la mise en service. Veuillez nous contacter.

Stockage avant la mise en service

Avant la mise en service, les réducteurs et motoréducteurs doivent uniquement être stockés dans un endroit sec. En cas de durée de stockage prolongée, des mesures spécifiques sont nécessaires. Le cas échéant, veuillez demander le manuel « Notice de mise en service et de montage B1000 » ou le télécharger sur Internet à partir de l'adresse www.nord.com.

Events

Les réducteurs (sauf SK 0182NB, SK 0282NB et SK 1382NB) sont pourvus en série d'une vis d'évent qui

compense les écarts de pression atmosphérique néfastes entre l'intérieur du réducteur et l'environnement. Cette vis d'évent est obturée lors de la livraison, afin d'éviter des fuites d'huile durant le transport. Avant la mise en service, l'évent doit être activé en retirant le bouchon d'étanchéité. Des clapets d'évent sont disponibles en option.

Réducteur double

En raison de nombreuses pièces tournantes dans les réducteurs doubles à quatre, cinq ou six étages et des puissances d'entraînement relativement faibles, il se produit des pertes en marche à vide significatives. C'est pourquoi, pour les moteurs à 4 pôles jusqu'à 0,75 kW, une perte de puissance en marche à vide d'env. 40 watts est prise en compte dans les tableaux.

Entraînements pour aérateurs, agitateurs, mélangeurs et ventilateurs

Pour les entraînements d'aérateurs, d'agitateurs et de mélangeurs dans les stations de traitement des eaux, dans les installations de biogaz et dans l'ingénierie des processus ainsi que pour les entraînements de ventilateurs, par ex. dans les tours de réfrigération, des conditions d'utilisation particulièrement strictes sont en règle générale exigées :

- fonctionnement continu 24 heures sur 24 avec le couple de sortie nominal ou la puissance nominale
- inertie importante en sortie avec un faible rapport de réduction
- vibrations dans la chaîne cinématique ainsi que des forces et des couples de flexion importants sur l'arbre de sortie pour les paliers directs des arbres des mélangeurs ou des ventilateurs dans le réducteur
- position verticale
- installation à l'extérieur, c'est-à-dire humidité et milieux agressifs, ainsi que des variations de température importantes avec des phénomènes de condensation
- des exigences pour la protection de l'environnement sont nécessaires, en l'occurrence une étanchéité absolue, une surveillance de la lubrification et un faible niveau de bruit.

Grâce à son expérience, NORD a développé un ensemble de mesures spécifiques pour répondre à ces conditions d'utilisation délicates. Ainsi, NORD vous invite à contacter nos services pour la mise en œuvre de ces mesures spécifiques.

Pour les entraînements d'agitateurs et de mélangeurs, le facteur de service f_B des réducteurs ne doit pas être inférieur à 1,7 compte tenu des charges importantes appliquées. Un facteur de service f_B supérieur à 2,0 est même recommandé. Pour les entraînements pilotés avec des convertisseurs de fréquence, veiller à ce qu'il n'y ait pas de vibrations induites par le système de régulation, comme par ex. avec une compensation de glissement. De plus, pour entraînement avec variateurs de fréquence, il est nécessaire de tenir compte du fait que lors d'une augmentation de la vitesse, la puissance imposée s'accroît proportionnellement au cube du rapport des vitesses.

Le facteur de service f_B doit toujours être calculé par rapport à la vitesse maximale.

Sélection d'un réducteur approprié

La sélection de réducteurs est prévue pour des moteurs triphasés asynchrones ou des moteurs monophasés de NORD et s'applique également aux moteurs ayant des caractéristiques techniques équivalentes. Si vous utilisez d'autres moteurs, tels que des servo-moteurs par exemple, consultez au préalable NORD.

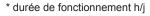
Si les indications importantes suivantes ne sont pas respectées lors du choix du réducteur, une surcharge est susceptible de se produire. Dans ce cas, la garantie ne pourrait pas s'appliquer.

Veuillez contacter les services commerciaux NORD en cas de doute afin que nous puissions vérifier ensemble la configuration du réducteur. Dans l'intérêt de tous, les problèmes de surcharge des réducteurs doivent impérativement être évités.

Critères

Les critères pour le choix d'un réducteur sont les suivants :

- La puissance mécanique transmissible P celleci est considérée par le facteur de service f_B dans le tableau correspondant du catalogue. La détermination du facteur de service requis est décrite au chapitre suivant.
- 2. La puissance thermique transmissible (puissance thermique limite) celle-ci ne doit pas être dépassée pendant une période prolongée (3h) afin d'éviter une surchauffe du réducteur. La puissance thermique transmissible représente éventuellement une limite dans le cas des réducteurs de grande taille à partir de SK 62 ou SK 6282 à 2 étages et des réducteurs à partir des tailles SK 73, SK 7382 ou SK 9072.1 à 3 étages. Nous préconisons de consulter NORD et de contrôler exactement les conditions d'utilisation si deux ou plusieurs points parmi les suivants s'appliquent :
- position verticale (position de montage M2 ou M4,
 ⇒ □ A59)
- moteur avec lanterne IEC ou avec arbre d'entrée libre de type W
- puissance d'entraînement P₁ > 100 kW
- rapport de réduction i_{ges} < 20
 <p>(pour réducteurs à couple conique i_{ges} < 40)</p>
- vitesses d'entrée n₁ > 1500 min⁻¹
- température ambiante élevée > 40°C


Si les conditions d'installation sont particulières, comme par exemple un réducteur enfermé, une exposition à la chaleur, un espace réduit etc., veuillez nous consulter. Pour éviter les surcharges thermiques, des mesures spécifiques peuvent être envisagées (refroidisseur d'huile, etc.); veuillez nous consulter.

Puissance d'entraînement et facteur de service

puissance d'entraînement nécessaire l'application envisagée est déterminée par mesure ou par calcul. La puissance nominale du moteur à installer P₁ est sélectionnée en fonction de cette puissance d'entraînement. En règle générale, elle est légèrement supérieure à la puissance d'entraînement nécessaire étant donné qu'il faut tenir compte d'une sécurité en cas d'états de fonctionnement particuliers de l'application envisagée et que les puissances nominales des moteurs sont en principe normalisées. La possibilité d'à-coups brefs et rares ne doit pas être prise en compte lors du choix de la puissance nominale à installer d'un moteur triphasé. Si en cas de fonctionnement du moteur triphasé sur un variateur de fréquence, des facteurs supplémentaires influencent le choix de la puissance nominale, veuillez nous adresser une demande détaillée.

Contrairement au moteur, la possibilité d'à-coups brefs et rares influe considérablement sur la charge et le choix du réducteur.

Le facteur de service f_B du réducteur prend en compte de façon précise ce phénomène, ainsi que d'autres effets sur le réducteur. Le diagramme 1 représente le facteur de service minimum f_{Bmin} nécessaire en fonction de la durée de fonctionnement quotidienne de l'entraı̂nement, de la fréquence de démarrage Z et du degré de choc A, B ou C de l'application.

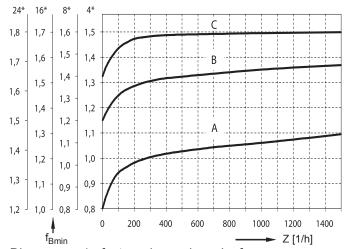


Diagramme 1 : facteur de service min. f_{Bmin}

Selon la régularité du fonctionnement et le facteur d'accélération de masse, on distingue trois degrés de choc (\$\Rightarrow\$\mathbb{\text{A13}}\$). Alors que la classification de la régularité du fonctionnement décrit les chocs provenant de la machine d'entraînement, le facteur d'accélération de masse détermine les pics de charge lors de la commutation. La liste suivante des exemples d'application typiques résulte des connaissances acquises depuis de nombreuses années dans le domaine de la classification de la régularité du fonctionnement.

Classification de la régularité du fonctionnement

A) Fonctionnement régulier

Petites vis de convoyeur, ventilateurs, lignes de montage, bandes transporteuses légères, petits agitateurs, élévateurs, installations de nettoyage, remplisseuses, machines de contrôle, transporteurs à bande

B) Fonctionnement irrégulier

Dévidoirs, appareils d'alimentation pour machines à bois, monte-charges, machines à équilibrer, unités de filetage, lourdes bandes de transport, treuils, portes coulissantes, évacuateurs de fumier, installations d'emballage, bétonneuses, grues, broyeurs, machines à cintrer, pompes à engrenage

C) Fonctionnement très irrégulier

Agitateurs et mélangeurs, cisailles, presses, centrifugeuses, laminoirs, treuils et élévateurs lourds, broyeurs à meules, concasseurs, chaînes à godets, poinçonneuses, broyeurs à marteaux, presses à excentrique, convoyeurs à rouleaux, tambours de nettoyage ou de dessablage, machines à plier, machines à broyer, déchiqueteuses, dispositifs de vibration

Le degré de choc se déduit de la régularité du fonctionnement et du facteur d'accélération de masse m_{af} comme indiqué dans le tableau suivant. C'est toujours le degré de choc le plus élevé provenant du fonctionnement et du facteur d'accélération de masse qui s'applique ici.

Exemple : fonctionnement irrégulier et m_{af} = 0,2 correspond au degré de choc B

Facteur d'accélération de masse maf

Degré de choc	Fonctionnement	Facteur d'accélération de masse
А	Fonctionnement régulier	m _{af} ≤ 0,25
В	Fonctionnement irrégulier	0,25 < m _{af} ≤ 3
C Fonctionnement très irrégulier		3 < m _{af} ≤ 10

Avec m_{af} comme facteur d'accélération de masse :

$$m_{af} = \frac{J_{ex.red.}}{J_{Mot.}} = \frac{J_{ex.}}{J_{Mot.}} \cdot \left(\frac{1}{i_{ges}}\right)^2$$

J_{ex.} tous les moments d'inertie de masse externes tous les moments d'inertie de masse externes

J_{ex.red.} tous les moments d'inertie de mas réduits au moteur d'entraînement

J_{Mot.} Moment d'inertie de masse du moteur ⇒ □ F4)

i_{ges} Rapport de réduction

Le facteur d'accélération de masse m_{af} représente le rapport entre les masses externes côté sortie et les masses rapides côté entrée. Le facteur d'accélération de masse a une influence déterminante sur l'intensité des à-coups dans le réducteur lors du démarrage et du freinage et sur les vibrations. Les moments d'inertie de masse externes comprennent aussi la charge comme par ex. la matière transportée sur les bandes de transport. Si $m_{af} > 10$, en cas de jeu important dans les organes de transmission, de vibrations dans le système ou si vous avez besoin de précisions sur le degré de choc ou en cas de doute, veuillez consulter NORD. Le facteur de service f_B du réducteur est indiqué dans le tableau de puissances et vitesses pour chaque vitesse proposée.

Le facteur de service est le rapport du couple de sortie maximal du réducteur maximal M_{2max} et du couple de sortie M_2 résultant de la puissance moteur P_1 installée, de la vitesse de sortie n_2 et du rendement du réducteur η .

$$M_2 = \frac{9550 \cdot P_1 \cdot \eta}{n_2}$$
 [Nm] P_1 [kW], n_2 [min⁻¹]

$$f_B = \frac{M_{2max}}{M_2}$$

$$P_1 = \frac{M_2 \cdot n_2}{n \cdot 9550}$$
 [kW] M_2 [Nm], n_2 [min⁻¹]

Si le réducteur sélectionné est correct, le facteur de service f_B provenant du tableau des puissances et des vitesses est supérieur ou égal au facteur de service minimal f_{Bmin} conformément au diagramme 1.

$$f_{R} \ge f_{Rmin}$$

Les réducteurs à engrenages cylindriques, à arbres parallèles et à couple conique ont un rendement très élevé (env. 98% soit η =0,98 .par étage de réducteur). Par conséquent, un rendement simplifié de η =1,0 permet d'obtenir en général des résultats précis. Pour les réducteurs à roue et vis, le rendement du réducteur η est indiqué dans les tableaux des puissances et des rapports de réduction pour la vitesse de sortie correspondante n_2 .

Pour les réducteurs avec un arbre d'entrée libre de type W, la puissance d'entraı̂nement installée P_1 doit avoir une valeur maximale de :

$$P_1 = \frac{M_{2max} \cdot n_2}{9550 \cdot f_{Bmin} \cdot \eta} [kW] M_{2max} [Nm], n_2 [min^{-1}]$$

Ce faisant, la puissance d'entraînement maximale P_{1max} ne doit pas être dépassée.

$$P_1 \le P_{1max}$$

Les tableaux des puissances et des rapports de réduction présentent pour une vitesse de sortie n_2 , le couple de sortie maximal du réducteur M_{2max} et la puissance moteur maximale P_{1max} .

Si des freins sont montés côté entraînement, comme par ex. dans le cas de moteur frein, il est important de prendre en compte le couple de freinage lors du choix du réducteur. Pour des applications avec des moments d'inertie de la charge externes relativement élevés $(m_{\rm af}>2)$ - comme par exemple pour les transmissions, les tours, les tables tournantes, les entraînements de porte, les agitateurs et les aérateurs de surface - il est recommandé de sélectionner un couple de freinage qui ne dépasse pas 1,2 fois le couple nominal du moteur. Si des couples de freinage plus élevés doivent être employés, il est impératif d'en tenir compte lors de la sélection du réducteur. Veuillez nous consulter.

Les moteurs à économie d'énergie de la classification IE2 ont des couples de décrochage et des réserves de puissance élevés et peuvent, si cela est requis par l'application et n'est pas limité électriquement, fournir durablement des puissances plus fortes que celles autorisées. Il est impératif d'en tenir également compte lors de la sélection du réducteur.

Des applications spécifiques et des modes de fonctionnement particuliers (comme par ex. des blocages, des courses contre des butoirs fixes, des inversions de marche, des charges changeantes pendant l'immobilisation, des rapports de multiplication) doivent être considérés lors du choix du réducteur. Veuillez nous consulter à ce sujet.

Spécificité des réducteurs à roue et vis

Lors de la configuration des réducteurs à roue et vis, en présence d'à-coups, de couples de sortie de retour et de facteurs d'accélération de masse m_{af} supérieurs, il est en principe nécessaire d'utiliser des engrenages à pas multiples pour éviter un arc-boutement.

Le nombre de filets z_1 est indiqué dans les tableaux de puissances et de rapports de réduction. Il en résulte :

 $m_{af} \le 0.25$ tous les nombres de filets sont possibles $0.25 < m_{af} \le 3.00$ nombres de filets $z_1 \ge 3$ recommandé $3.00 < m_{af} \le 10.00$ nombres de filets $z_1 \ge 6$ recommandé

En plus du facteur de service f_{Bmin} du diagramme 1 ($\Rightarrow \square A12$), dans le cas des réducteurs à roue et vis, il convient de rechercher le facteur de service f_{B1} pour la température ambiante T_u ainsi que le facteur de service f_{B2} pour la durée de connexion ED par heure. Les diagrammes 2 et 3 permettent de relever les facteurs f_{B1} et f_{B2} .

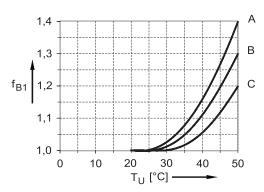


Diagramme 2 :facteur de service f_{B1}

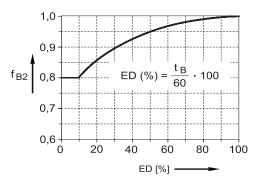


Diagramme 3 : facteur de service f_{B2} ED = durée de connexion t_{B} = durée de charge en min/h

Si le réducteur sélectionné est correct, le facteur de service f_B provenant du tableau des puissances et des vitesses est supérieur ou égal au produit du facteur de service minimal f_{Bmin} et des facteurs f_{B1} et f_{B2}

$$f_B \ge f_{Bmin} \cdot f_{B1} \cdot f_{B2}$$

Pour les réducteurs à roue et vis avec arbre d'entrée libre de type W, la puissance d'entraı̂nement installée P_1 doit avoir une valeur maximale de :

$$P_1 = \frac{M_{2max} \cdot n_2}{9550 \cdot f_{Bmin} \cdot f_{B1} \cdot f_{B2} \cdot \eta} [kW]$$
 $\frac{M_{2max} [Nm]}{n_2 [min^{-1}]}$

Ce faisant, la puissance d'entraînement maximale P_{1max} ne doit pas être dépassée.

$$P_1 \le P_{1max}$$

Les tableaux de puissances et de rapports de réduction présentent pour une vitesse de sortie n_2

- le couple de sortie maximal du réducteur M_{2max}
- le rendement du réducteur η
- la puissance moteur maximale P_{1max}

Le rendement du réducteur η doit être utilisé comme coefficient dans l'équation ci-dessus, par ex. 0,9 = 90%.

Efforts radiaux F_R et efforts axiaux F_Δ

Les tableaux des puissances et des vitesses indiquent les charges radiales admissibles F_R et les charges axiales F_A qui peuvent s'exercer l'arbre de sortie.

De nombreux types de réducteurs sont livrés en option avec des roulements et arbre de sortie renforcés VL. Pour les réducteurs à arbres parallèles et les réducteurs à couple conique, une exécution renforcée VL2/VL3 est notamment importante. Cette exécution particulièrement appropriée pour les agitateurs est décrite à la page A30. Veuillez nous indiquer les données de charge. Nous réaliserons alors un calcul de la durée de vie des paliers.

L'exécution renforcée VL contient des paliers à roulement plus puissants et en supplément, de l'acier de très haute qualité pour l'arbre de sortie, si cela est nécessaire pour la sécurité de l'arbre. Dans le cas des réducteurs à arbres parallèles, des réducteurs à couple conique et des réducteurs à roue et vis, l'exécution VL comporte des roulements coniques en tant que paliers d'arbre de sortie à la place des roulements à billes. L'exécution VL est ainsi particulièrement adaptée pour les efforts radiaux élevés ainsi que pour les efforts axiaux plus importants en tant que palier normal.

Dans le cas des types de réducteurs à arbres parallèles à partir de la taille SK10282 et des types de réducteurs à couple conique à partir de SK9052.1, le palier normal de l'arbre de sortie offre déjà les roulements coniques porteurs. Un autre renforcement tout spécialement prévu pour des efforts radiaux maximum est disponible pour ces types de réducteurs avec l'exécution VL qui dispose de roulements à tonneaux côté sortie. Par conséquent, dans le cas des types de réducteurs, le palier normal avec des roulements coniques doit être sélectionné si des efforts radiaux élevés sont présents et que des efforts axiaux élevés doivent être appliqués. Veuillez contacter les services commerciaux NORD en cas de doute, afin que nous puissions effectuer ensemble le choix optimal du réducteur.

Les efforts radiaux et axiaux pour le palier renforcé sont signalés par l'abréviation VL dans les tableaux. Les efforts radiaux et axiaux indiqués sont valables pour les réducteurs à pattes et à bride avec arbre plein. Les indications de force pour effort radial avec effort axial nul ou effort axial avec effort radial nul. Les indications d'effort s'entendent pour effort radial et axiaux conjugués sont présents, veuillez nous consulter. Nous réaliserons alors un calcul.

Le palier de sortie du réducteur à arbre creux est conçu pour encaissser les efforts engendrés par les bras ou console de réaction. Dans le cas de forces nettement plus importantes qui agissent sur les arbres creux, veuillez nous consulter. Les charges indiquées dans les tableaux de vue d'ensemble des puissances et vitesses se basent sur un facteur de service pour les efforts radiaux et axiaux $f_{BF} = 1$.

Pour des charges saccadées et des durées prolongées (> 8 heures / jour), il est également nécessaire de prendre en compte un facteur de service f_{BF} > 1 pour les efforts radiaux et axiaux. Veuillez nous contacter.

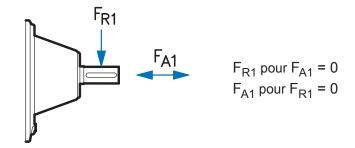
Les efforts radiaux indiqués se réfèrent à une application de la force au milieu de la portée de l'arbre. Pour le calcul des efforts radiaux admissibles, les sens d'application de la force et de rotation les plus défavorables ont été utilisés. Pour le calcul des efforts axiaux admissibles, les sens d'application de la force et de rotation les plus défavorables ont été également utilisés. Des efforts radiaux et axiaux plus élevés sont éventuellement possibles - pour un calcul précis, veuillez nous fournir les sens d'application de la force et de rotation effectifs ainsi que la durée de vie requise.

Si des organes de transmission sont placés sur l'arbre de sortie, il convient de tenir compte, lors de la détermination de l'effort radial, d'un coefficient correspondant (f_7) .

Coefficient d'effort radial f_z

Organes de transmission	f _z	Consignes
Roues dentées	1,1	z ≤ 17 dents
Roues à chaîne	1,4	z ≤ 13 dents
Roues à chaîne	1,2	z ≤ 20 dents
Poulies à gorges	1,7	par force de
Poulies plates	2,5	précontrainte

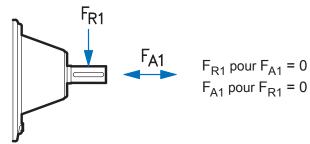
L'effort radial apparaissant au niveau de l'arbre du réducteur est déterminé comme suit :


$$F_{Rvorh} = \frac{2 \cdot M_2}{d_0} \cdot f_z \le F_R$$

F _{Rvorh}	Effort radial appliqué sur l'arbre du réducteur	[kN]
F _R	Effort radial admissible selon les tableaux des vitesses et puissances	[kN]
M_2	Couple de sortie du réducteur	[Nm]
f_Z	Coefficient de sécurité (voir tableau)	
do	Diamètre de l'élément de transmission.	[mm]

Effort radial F_{R1} / Effort axial F_{A1} Arbre d'entrée du réducteur - W

Lanterne W



	Type de r	éducteur														
Engrenages cylindriques		Couple conique	Roue et vis													
			16		Ef	fort ra	adial	F _{R1} 6	et effo	ort ax	ial F _A	_{.1} ma	ximuı	m		
SK 0182NB SK 0282NB			F _{R1} [kN	0,18 0,25												
	SK 0282NB	SK 92172		F _{A1} [kN					0,37							
	SK 1382NB	SK 92372	SK 02040	F _{R1} [kN 0,85 0 F _{A1} [kN	0,18 0,25 1] 0,82 0,78	0,75	0,72	0,70		0,43	0,42	0,23				
		SK 92672		F _{R1} [kN 2,13 2 F _{A1} [kN] 0,18 0,25 i] 2,1 2,1	0,37					2,20		4,00		1,0	0,74
		SK 92772		P ₁ [kW 0,12 0 F _{R1} [kN 2,3 2 F _{A1} [kN F] 0,18 0,25 I] 2,2 2,1			0,75		1,50			4,00		7,50	9,20

Effort radial F_{R1} / Effort axial F_{A1} Arbre d'entrée du réducteur - W

Lanterne W

Engrenages cylindriques		éducteur Couple conique	Roue et vis								
				Effort radial F _{R1} et effort axial F _{A1} maximum							
SK 11E SK 02 SK 12	SK 1282 SK 2382 SK 3382	SK 9012.1 SK 9016.1 SK 9022.1	SK 02050 SK 12063 SK 12080	P ₁ [kW] 0,12 0,18 0,25 0,37 0,55 0,75 1,10 1,50 2,20 3,00							
SK 13 SK 23 SK 33N		SK 9013.1 SK 9017.1 SK 9023.1 SK 9033.1	SK 13050 SK 13063 SK 13080 SK 33100	F _{R1} [kN] 0,85 0,82 0,78 0,75 0,72 0,70 0,61 0,43 0,42 0,23 F _{A1} [kN]							
OK 04E	CIV 2202			1,2 1,1 1,0 0,89 0,77 0,58 0,35 0,29 0,20 0,15							
SK 21E SK 31E SK 22	SK 2282 SK 3282 SK 4382	SK 9032.1 SK 9043.1 SK 9053.1	SK 32100 SK 43125	P ₁ [kW] 0,12 0,18 0,25 0,37 0,55 0,75 1,10 1,50 2,20 3,00 4,00 5,50	7,50						
SK 32 SK 43 SK 53				F _{R1} [kN] 2,1 2,1 2,1 2,0 1,9 1,8 1,8 1,7 1,6 1,1 1,0	1,0						
				F _{A1} [kN] 2,9 2,9 2,8 2,6 2,5 2,3 2,1 2,0 1,7 1,5 0,98 0,65	0,27						
SK 41E SK 51E SK 42	SK 4282 SK 5282 SK 6382	SK 9052.1	SK 9042.1 SK 9052.1	SK 9052.1	2 SK 9052.1				SK 42125	P1 [kW] 0,37 0,55 0,75 1,10 1,50 2,20 3,00 4,00 5,50 7,50 9,20 11,0	
SK 52 SK 63										F _{R1} [kN] 2,1 2,8 2,4 2,7 2,6 2,4 2,3 2,1 1,8 1,3 0,98 0,47	
				F _{A1} [kN] 4,1 3,9 3,8 3,5 3,3 2,7 2,5 2,3 1,6 1,4 1,0 0,59							
SK 62 SK 72 SK 73	72 SK 7282	SK 9072.1	K 9072.1	P ₁ [kW] 0,75 1,10 1,50 2,20 3,00 4,00 5,50 7,50 9,20 11,0 15,0 18,5	22,0 30,0 37,0						
SK 83 SK 93	SK 8382 SK 9382			F _{R1} [kN] 4,4 4,3 4,2 4,1 3,9 3,7 3,4 3,4 3,1 2,7 2,7 2,3	1,8 1,2 0,87						
SK 93	SK 8282	SK 9082.1		F _{A1} [kN] 6,1 5,9 5,8 5,5 5,2 4,9 4,4 4,3 3,9 3,3 3,3 2,7	2,2 1,1 0,74						
SK 82 SK 92 SK 102 SK 103	SK 9282 SK 9282 SK 10382	SK 9086.1		P ₁ [kW] 3,00 4,00 5,50 7,50 9,20 11,0 15,0 18,5 22,0 30,0 37,0 45,0 F _{R1} [kN]	55,0 75,0 90,0						
SK 103		SK 9090.1		11,0 10,9 10,8 10,4 10,1 9,9 9,5 9,3 9,3 8,4 8,1 8,3 F _{A1} [kN]	7,4 4,6 5,2						
	SK 10282			4,3 4,2 4,1 3,8 3,6 3,4 3,1 3,0 2,9 2,3 2,0 2,2 P ₁ [kW]	1,5 0,78 0,24						
	SK 10382 SK 11282 SK 11382				160 200						
	SK 12382			17,3 17,1 16,9 11,7 16,1 15,7 15,2 14,5 13,2 12,1 10,7 9,0 F _{A1} [kN]	6,9 3,6						
				13,4 13,7 13,4 13,1 12,5 12,0 11,7 11,0 9,6 8,5 7,2 6,8	5,0 2,6						

Vue d'ensemble - Exécutions livrables

Abréviations	Signification	Réducteur à engrenages cylindriques	Réducteur à arbres parallèles	Réducteur à couple conique	Roue et vis
sans	Arbre plein, fixation à pattes	✓		✓	✓
Α	Arbre creux		✓		
AF	Arbre creux, bride B5		✓	√5)	✓
AX	Arbre creux, fixation à pattes		√ 1)	✓	
AXF	Arbre creux, fixation à pattes, bride B5			✓	
AXZ	Arbre creux, fixation à pattes, bride B14			✓	
AZ	Arbre creux, bride B14		√ 1)	√5)	✓
AZD	Arbre creux, bride B14 avec bras de réaction			√2)5)	✓
AZK	Arbre creux, bride B14 avec console de réaction			✓	
В	Élément de fixation pour arbre creux		✓	✓	✓
E	1 étage	✓			
EA	Arbre creux cannelé selon DIN 5480		√4)	√4)	
EF	1 étage, bride B5	✓			
F	Arbre plein, bride B5	✓			
G	Butée caoutchouc pour bras de réaction		✓		
Н	Capot de protection contre les contacts		✓	✓	✓
IEC	Lanterne pour le montage de moteurs normalisés IEC B5	√	✓	✓	✓
LX	Arbre plein des deux côtés, fixation à pattes			✓	✓
MK	Console moteur	✓	✓	✓	✓
R	Antidévireur intégré			✓	
RLS	Antidévireur dans la lanterne W	✓	✓	✓	✓
S	Arbre creux avec frette de serrage		✓	✓	✓
SEK	Lanterne servo avec accouplement à serrage	✓	✓	✓	✓
SEP	Lanterne servo avec accouplement à clavette	✓	✓	✓	✓
V	Arbre plein		✓		
VF	Arbre plein, bride B5		✓	√5)	✓
VL	Roulement renforcé	✓	✓	✓	✓
VL2	Exécution agitateur		✓	✓	
VL 3	Exécution agitateur avec « Drywell »		✓	✓	
VX	Arbre plein, fixation à pattes		√ 1)		
VXF	Arbre plein, fixation à pattes, bride B5			✓	
VXZ	Arbre plein, fixation à pattes, bride B14			✓	
VZ	Arbre plein, bride B14		√1)	√5)	
W	Lanterne d'entrée avec arbre d'entrée libre	✓	✓	✓	✓
XF	Arbre plein, fixation à pattes, bride B5	√3)			
XZ	Arbre plein, fixation à pattes, bride B14	√3)			

[✓] Les versions livrables sont cochées.

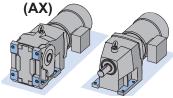
- 1) SK xx82NB à partir de SK 9282 incl. avec surfaces latérales usinées pour plaque de fixation
- 2) Livrable jusqu'à SK 9072.1 incl.
- 3) Livrable jusqu'à SK 52 incl.
- 4) Non livrable pour les types SK xx82NB... et SK 92xxx...
- 5) Sur la partie inférieure du carter, les modèles disposent en supplément de trous taraudés. Ceux-ci ne sont pas appropriés pour la fixation du réducteur mais pour le montage d'une console de réaction ⇒ □ D118

Types d'entraînement

Le concept modulaire de NORD permet d'ajouter différents types d'entraînements aux réducteurs. Tous les entraînements sont vissés et contiennent des ajustements serrés fixés pour un montage simple et précis.

NORD offre les types d'entraînements suivants :

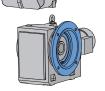
- Moteur / moteur frein directement monté
- Arbre d'entrée libre (bride B14 côté entraînement en option)
- Adaptateur moteur pour moteurs IEC B5 / Adaptateur moteur à bride NEMA C
- · Adaptateur de servo-moteur
- · Console moteur
- Fixation moteur propre à l'utilisateur


Options de montage

NORD propose entre autres les options de montage suivantes :

- Patte (X)
- Bride B5 (F)
- Bride B14 (Z)
- Arbre creux (A)
- Patte et bride B5 (XF)
- Patte et bride B14 (XZ)

Carter à pattes


Les réducteurs sont généralement exécutés pour le montage à pattes.

Ils sont fixés avec des vis ou goujons sur une plaque de montage. La majorité des réducteurs possède des pattes de montage avec des trous de passage.

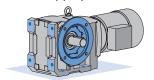
Bride B5 (F)

Une bride B5 est une bride de montage simple avec un grand diamètre, des trous de passage et un ajustement serré de centrage qui permet de fixer le réducteur à l'application, et ce, de façon sûre. La bride B5 a en standard des

dimensions métriques et elle est disponible pour tous les motoréducteurs NORD.

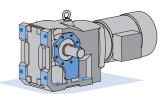
Bride B14 (Z)

La bride B14 dispose de trous taraudés et d'une base de centrage insérée



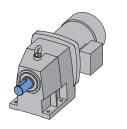
dans le carter du motoréducteur. Cette base de centrage est en principe utilisée pour fixer le motoréducteur à la base de la machine de l'application ou appliquer de nombreux composants à visser tels que la bride B5, le bras de réaction ou le cache de l'arbre. La bride B14 a en standard des dimensions métriques et constitue une méthode compacte pour fixer le motoréducteur.

Carter à pattes avec bride B5 (.XF)


NORD peut livrer de nombreux motoréducteurs avec carter à pattes ayant en supplément une bride B5. Ces motoréducteurs de type XF sont en principe conçus pour le montage à pattes. La bride B5 est généralement prévue pour fixer l'équipement auxiliaire sur le motoréducteur. Si la bride B5 est utilisée pour la fixation du motoréducteur, un support supplémentaire doit être appliqué.

Carter à pattes avec bride B14 (.XZ)

NORD peut livrer de nombreux motoréducteurs avec carter à pattes ayant en supplément une bride B14. Ces motoréducteurs de type XZ sont en principe conçus pour le montage à pattes. La bride B14 est généralement prévue pour fixer l'équipement auxiliaire sur le motoréducteur. Si la bride B14 est utilisée pour la fixation du motoréducteur, un support supplémentaire doit être appliqué.



Options d'arbre

Arbre plein (V)

Les arbres standard avec clavette de NORD ont à l'avant un trou taraudé. Les arbres sont disponibles dans des dimensions

métriques ou pouces sur demande. Le matériau standard est C45.

Arbre creux (A)

Les arbres creux standard avec clavette sont fabriqués en C45. De nombreux motoréducteurs NORD sont disponibles avec différents diamètres d'arbre.

Arbre creux avec profil cannelé (EA)

Des arbres creux avec profil métrique d'arbre cannelé selon DIN 5480 sont disponibles pour de nombreux motoréducteurs NORD avec arbre creux. Ces arbres cannelés sont fréquemment utilisés pour des entraînements de déplacement de grue.

Frette de serrage (S)

La frette de serrage se base sur le principe de la compression de l'arbre creux du réducteur sur l'arbre plein du client.

Cette compression est assurée par la déformation de la bague à portées

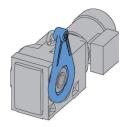
coniques lors du rapprochement par vissage vissage des 2 demi- manchons. Les frettes de serrage confèrent un ajustage serré complètement exempt de jeu, ce qui permet de transmettre des couples élevés contrairement à d'autres types de montages. Les frettes de serrage ne s'usent pas, même en cas de variations fréquentes des charges et sens de rotation.

Les frettes de serrage ont entre autres les avantages suivants :

- aucune corrosion de la surface d'ajustement contrairement aux entraînements à clavette
- · facilité de montage et démontage
- souvent des diamètres d'alésage plus grands que dans le cas d'arbres creux à clavette

Détails ⇒ A22

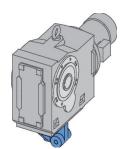
Frette de serrage renforcée (VS)


La frette de serrage renforcée de NORD offre une force de serrage supérieure, d'où une meilleure sécurité. Détails ⇒ □22

Palier de sortie renforcé (VL)

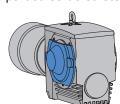
L'application des paliers de sortie renforcés avec une capacité de charge augmentée permet la réception de charges externes (radiales/axiales) plus élevées. Dans le cas d'une charge axiale majoritairement plus forte, veuillez nous consulter.

Bras de réaction (D)


Un bras de réaction est une solution compacte et simple permettant de sécuriser un motoréducteur avec arbre creux. Il est vissé sur la bride B14 du motoréducteur. Le bras de

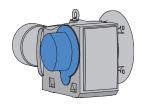
réaction dispose d'une gaine en caoutchouc au niveau du trou de fixation, qui amortit les charges de chocs exercées.

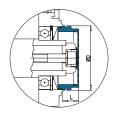
Console de réaction (K)


Une console de réaction est une solution compacte et simple permettant de sécuriser un motoréducteur embrochable. Elle est vissée sur la partie inférieure

du réducteur. La console de réaction dispose d'un silent bloc inséré dans l'alésage de fixation, qui amortit les à coups de démarrage et de freinage.

Capot d'arbre creux (H)


Un cache pour l'arbre creux en rotation est disponible en option. Il protège également l'arbre de sortie de la poussière et des particules de saleté.


Capot de frette de serrage (SH)

Le cache de frette de serrage est requis pour tous les réducteurs à frette de serrage (protection de l'environnement contre les parties tournantes).

Cache d'arbre creux IP66 (H66)

NORD propose des caches d'arbre creux ayant la classe de protection IP66 (protection contre la poussière et les projections d'eau). L'arbre creux en rotation est complètement étanche contre l'humidité et les corps étrangers.

Élément de fixation (B)

Étant donné que des vibrations minimes apparaissent sur chaque arbre, NORD propose un élément de fixation disponible en option. Ceci permet d'éviter que le motoréducteur ne soit sorti de sa position de manière axiale. L'élément de fixation peut être monté de deux manières. Détails ⇒ □A27

Butée caoutchouc (G)

Deux butées caoutchouc sont fixées sur la console de réaction et sur le bras de réaction. Elles servent à amortir les efforts de couple lors des démarrages et freinages. Leur utilisation prolonge la durée de vie du motoréducteur. Avec plusieurs butées

accolées, l'effet d'amortissement peut être renforcé. La plage de températures autorisée pour l'utilisation de butées caoutchouc est de 40°C à +80°C.

Les butées caoutchouc sont livrées par paire.

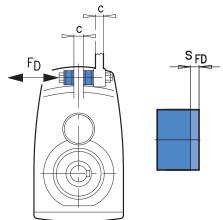
Il est possible de mettre plusieurs butées en série pour augmenter l'amortissement.

La compression totale est: $s_{FD \text{ tot}} = n \times s_{FD}$

 $s_{FD \text{ tot}} = n \times s_{FD} \quad [mm]$

compression d'une butée caoutchouc [mm]

n nombre de butées caoutchouc en série


Lors du montage, les butées caoutchouc doivent **uniquement** être comprimées de manière à éliminer tout jeu entre les surfaces de contact. Une précontrainte des butées caoutchouc n'est pas autorisée!

Caractéristiques techniques ⇒ C118, D95, D97, D99, D101

Butée caoutchouc renforcée (VG)

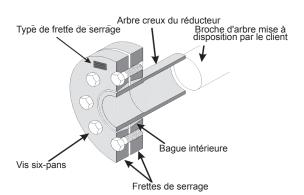
Des butées caoutchouc renforcées de type VG sont également livrables en option pour les réducteurs à arbres parallèles embrochables.

À partir de la taille SK 9082.1, les réducteurs à couple conique en exécution AZK sont livrés avec une butée caoutchouc.

F_D Pression exercée sur la butée caoutchouc [kN]

c Largeur du bras

s_{ED} Compression d'une butée caoutchouc



Frettes de serrage

L'utilisation de frettes de serrage est particulièrement recommandée pour les réducteurs à arbre creux afin d'améliorer et de faciliter le montage. La longueur du tourillon d'arbre mis à disposition par le client et inséré dans l'arbre creux du réducteur doit avoir la même longueur que l'arbre creux (mH). Le diamètre du tourillon d'arbre doit être exécuté conformément à ISO h6 ou f6. (f6 = montage plus facile). Le matériau du tourillon d'arbre mis à disposition par le client doit présenter une limite d'élasticité minimum de Re = 360 N/mm² afin que la pression exercée pour créer la friction puisse se faire sans déformation définitive.

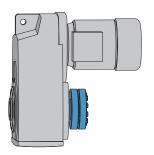
Lors du montage de la frette de serrage, il convient de respecter la notice de mise en service et d'entretien B1000.

M_{2max} Couple de sortie max. admissible (réducteur)

s Sécurité de la frette de serrage pour des ajustements h6 ou f6 avec M_{2max}

Zs Nombre de vis de serrageM_A Couple de serrage nécessaire

Réducteur à arbres parallèles


Torre de rée	4		Frette de s	errage		Vis six- DIN 931	pans / DIN 933* 10	0.9 Vz
Type de réc	ucteur	Туре	M _{2max} [Nm]	s ^{h6}	s ^{f6}	d x l	Zs	M _A [Nm]
SK 0282 NB	ASH	SN 30 / 40 V	165	5,9	5,2	M6 x 35*	8	12
SK 1382 NB	ASH	SN 35 / 46 V	370	3,8	3,4	M6 x 35*	10	12
SK 1282	ASH	SN 30 / 40 V	296	3,3	2,9	M6 x 35*	8	12
SK 2282	ASH	SN 35 / 46 V	563	2,6	2,2	M6 x 35*	10	12
SK 3282	ASH	SN 40 / 55 V	1039	2,3	2,0	M8 x 40	8	30
SK 4282	ASH	SN 50 / 62 V	2000	2,2	2,0	M8 x 40	10	30
SK 5282	ASH	SN 60 / 76 V	3235	2,5	2,3	M10 x 50	10	59
SK 6282	ASH	SN 70 / 90 V	6000	2,3	2,2	M12 x 70*	10	100
SK 7282	ASH	SN 80 / 108 V	8300	2,5	2,4	M12 x 70*	14	100
SK 8282	ASH	SN 100 / 128 V	13200	2,3	2,2	M16 x 80*	8	250
SK 9282	ASH	SN 125 / 158 V	25400	2,3	2,2	M16 x 80*	12	250
SK 10282	ASH	SN 160 / 210 V	37200	3,6	3,4	M20 x 100	14	490
SK 11282	ASH	SN 180 / 230 V	69000	1,9	1,8	M20 x 100*	12	490
SK 12382	ASH	SN 180 / 230 VV	90000	4,5	4,4	M30 x 200	16	1700

Frettes de serrage renforcées type VS (broyeurs)

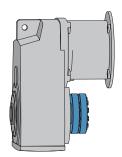
Time de ni	£ al a.t. a		Frette de s	errage		Vis six DIN 931	-pans 10.9 Vz	
Type de réducteur		Туре	M _{2max} [Nm]	s ^{h6}	s ^{f6}	d x l	Zs	M _A [Nm]
SK 7282	AVSH	SN 85 / 108 VS	8300	3,90	3,65	M16 x 90	10	250
SK 8282	AVSH	SN 100 / 128 VS	13200	3,57	3,35	M20 x 100	8	490
SK 9282	AVSH	SN 130 / 158 VS	25400	3,89	3,71	M20 x 130	12	490
SK 11282	AVSH	SN 180 / 230 VS	69000	3,69	3,57	M24 x 150	16	840

Les données présentées s'appliquent aussi aux réducteurs à arbres parallèles avec des nombres d'étages plus élevés ⇒ □A49

Frettes de serrage

Motoréducteurs à arbres parallèles livrables avec frette de serrage

Type de réduc-								/loteur							
teur	63	71	80	90	100	112	132	160	180	200	225	250	280	315	315
SK 0282 NB ASH	✓														
SK 1282 ASH	✓	✓	✓												
SK 1382 NB ASH	✓														
SK 2282 ASH		✓	✓	✓	✓										
SK 3282 ASH		✓	✓	✓	✓	✓									
SK 3382 ASH			✓	✓											
SK 4282 ASH				✓	✓	✓	✓								
SK 5282 ASH				✓	✓	✓	✓	✓	*						
SK 6282 ASH					✓	✓	✓	✓	✓						
SK 6382 ASH				✓	✓	✓	✓	✓	✓						
SK 7282 ASH							✓	✓	✓	✓	*				
SK 7382 ASH					✓	✓	✓	✓	✓	✓	*				
SK 8282 ASH							✓	✓	✓	✓	✓				
SK 8382 ASH					✓	✓	✓	✓	✓	✓	✓				
SK 9282 ASH										✓	✓	✓	✓		
SK 9382 ASH							✓	✓	✓	✓	✓	✓	✓		
SK 10282 ASH													✓	✓	✓
SK 10382 ASH								✓	✓	✓	✓	✓	✓	✓	✓
SK 11282 ASH													✓	✓	✓
SK 11382 ASH								✓	✓	✓	✓	✓	✓	✓	✓
SK 12382 ASH										✓	✓	✓	✓	✓	✓


Frettes de serrage renforcées type VS

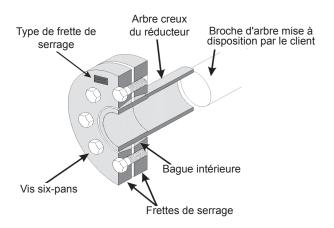
SK 7282	AVSH					✓	✓	✓						
SK 7382	AVSH			✓	✓	✓	✓	✓						
SK 8282	AVSH					✓	✓	✓	✓	*				
SK 8382	AVSH			✓	✓	✓	✓	✓	✓	*				
SK 9282	AVSH								✓	✓	✓	✓		
SK 9382	AVSH						✓	✓	✓	✓	✓	✓		
SK 11282	AVSH											✓	✓	✓
SK 11382	AVSH						✓	✓	✓	✓	✓	✓	✓	✓

* sur demande

Frettes de serrage

Motoréducteurs à arbres parallèles livrables avec frette de serrage et lanterne IEC

								Lanter	ne IEC	•					
Réducteur		IEC 63	IEC 71	IEC 80	IEC 90	CEI 100	CEI 112	CEI 132	CEI 160	CEI 180	CEI 200	CEI 225	CEI 250	CEI 280	CEI 315
SK 0282 NB	ASH	✓	✓	✓	✓										
SK 1282	ASH	✓	✓	✓	✓										
SK 1382 NB	ASH	✓	✓	✓	✓										
SK 2282	ASH		✓	✓	✓	✓	✓								
SK 3282	ASH		✓	✓	✓	✓	✓	✓							
SK 3382	ASH	✓	✓	✓	✓										
SK 4282	ASH				✓	✓	✓	✓	✓						
SK 5282	ASH				✓	✓	✓	✓	✓	✓					
SK 6282	ASH					✓	✓	✓	✓	✓	✓	✓			
SK 6382	ASH				✓	✓	✓	✓	✓	✓					
SK 7282	ASH							✓	✓	✓	✓	✓			
SK 7382	ASH					✓	✓	✓	✓	✓	✓	✓			
SK 8282	ASH							✓	✓	✓	✓	✓	✓	✓	
SK 8382	ASH					✓	✓	✓	✓	✓	✓	✓			
SK 9282	ASH									✓	✓	✓	✓	✓	✓
SK 9382	ASH							✓	✓	✓	✓	✓	✓	✓	
SK 10282	ASH												✓	✓	✓
SK 10382	ASH								✓	✓	✓	✓	✓	✓	✓
SK 11282	ASH							<u> </u>					✓	✓	✓
SK 11382	ASH								✓	✓	✓	✓	✓	✓	✓
SK 12382	ASH								✓	✓	✓	✓	✓	✓	✓


Frettes de serrage renforcées type VS

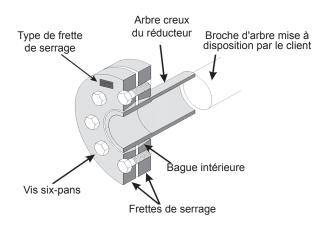
SK 7282	AVSH					✓	✓	✓	✓	✓			
SK 7382	AVSH			✓	✓	✓	✓	✓	✓	✓			
SK 8282	AVSH					✓	✓	✓	✓	✓			
SK 8382	AVSH			✓	✓	✓	✓	✓	✓	✓			
SK 9282	AVSH							✓	✓	✓	✓	✓	✓
SK 9382	AVSH					✓	✓	✓	✓	✓	✓	✓	
SK 11282	AVSH										✓	✓	✓
SK 11382	AVSH						✓	✓	✓	✓	√	✓	✓

Les motoréducteurs doubles à arbres parallèles à partir de SK 2282/02 sont disponibles en exécution IEC et W avec frette de serrage.

Frettes de serrage

Réducteur à couple conique

Town do no			Frette de se	errage		Vis six DIN 931	-pans / DIN 933* 10).9 Vz
Type de ré	aucteur	Туре	M _{2max} [Nm]	s ^{h6}	s ^{f6}	d x I	Zs	M _A [Nm]
SK 92072	AZSH	SN 25 / 34 V	90	4,19	3,28	M5 x 25	6	7
SK 92172	AZSH	SN 25 / 35 V	120	4,23	3,43	M5 x 25	8	7
SK 92372	AZSH	SN 30 / 40 V	230	4,26	3,73	M6 x 35*	8	12
SK 92672	AZSH	SN 35 / 46 V	380	3,77	3,27	M6 x 35*	10	12
SK 92772	AZSH	SN 40 / 55 V	660	3,53	3,09	M8 x 40	8	30
SK 9012.1	AZSH	SN 35 / 46 V	400	3,58	3,11	M6 x 35*	10	12
SK 9016.1	AZSH	SN 40 / 46 V	610	3,40	3,19	M6 x 35*	10	12
SK 9022.1	AZSH	SN 40 / 55 V	860	2,71	2,37	M8 x 40	8	30
SK 9032.1	AZSH	SN 50 / 62 V	1550	2,83	2,63	M8 x 40	10	30
SK 9042.1	AZSH	SN 60 / 76 V	2800	2,90	2,69	M10 x 50	10	59
SK 9052.1	AZSH	SN 70 / 90 V	4800	2,87	2,69	M12 x 70*	10	100
SK 9072.1	AZSH	SN 95 / 108 V	8500	3,70	3,56	M12 x 70*	14	100
SK 9082.1	AZSH	SN 110 / 138 V	13000	2,66	2,54	M16 x 70	8	250
SK 9086.1	AZSH	SN 125 / 158 V	20000	2,91	2,77	M16 x 80*	12	250
SK 9092.1	AZSH	SN 150 / 185 V	32000	2,66	2,56	M16 x 80*	14	250
SK 9096.1	AZSH	SN 150 / 195 V	50000	2,71	2,61	M20 x 100*	14	490


Frettes de serrage renforcées type VS (broyeurs)

			Frette de se	errage		Vis six DIN 931	-pans 10.9 Vz	
Type de réducteur		Туре	M _{2max} [Nm]	s ^{h6}	s ^{f6}	d x l	Zs	M _A [Nm]
SK 9072.1	AZVSH	SN 95 / 108 VS	8500	4,95	4,80	M16 x 90	10	250
SK 9082.1	AZVSH	SN 110 / 138 VS	13000	6,26	5,99	M20 x 130	12	490
SK 9086.1	AZVSH	SN 130 / 158 VS	20000	4,95	4,71	M20 x 130	12	490
SK 9092.1	AZVSH	SN 150 / 195 VS	32000	3,93	3,70	M20 x 100	14	490
SK 9096.1	AZVSH	SN 155 / 195 VS	50000	3,80	3,70	M24 x 180	14	835

Les données présentées s'appliquent aussi aux réducteurs à couple conique avec des nombres d'étages plus élevés ⇒ □A50

Frettes de serrage

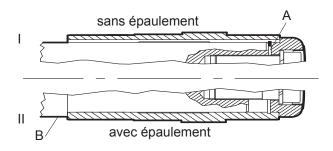
Réducteur à roue et vis

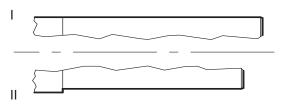
T a da á	du et e un		Frette de se	errage		Vis six-pa DIN 931 / D	ins DIN 933* 10.9	Vz
Type de ré	aucteur	Туре	M _{2max} [Nm]	s ^{h6}	s ^{f6}	d x l	Zs	M _A [Nm]
SK 02050	AZSH	SN 25 / 35 V	182	2,8	2,3	M5 x 25	8	7
SK 02050	AZSH	SN 30 / 40 V	182	5,4	4,7	M6 x 35*	8	12
SK 12063	AZSH	SN 30 / 40 V	383	2,6	2,2	M6 x 35*	8	12
SK 12063	AZSH	SN 35 / 46 V	383	3,0	3,2	M6 x 35*	10	12
SK 12080	AZSH	SN 40 / 55 V	779	3,0	2,6	M8 x 40	8	30
SK 12080	AZSH	SN 45 / 55 V	779	4,1	3,8	M8 x 40	8	30
SK 32100	AZSH	SN 50 / 62 V	1604	2,7	2,6	M8 x 40	10	30
SK 32100	AZSH	SN 60 / 76 V	1604	5,1	4,7	M10 x 50	10	59
SK 42125	AZSH	SN 60 / 76 V	3120	2,6	2,4	M10 x 50	10	59
SK 42125	AZSH	SN 70 / 90 V	3120	4,4	4,1	M12 x 70*	10	100

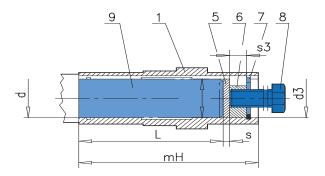
Les données présentées s'appliquent aussi aux réducteurs à roue et vis avec des nombres d'étages plus élevés ⇒ △A51


Éléments de fixation

Des éléments de fixation sont livrables en option pour les réducteurs à arbre creux.


Conditions d'utilisation :


L'arbre plein à utiliser doit être pourvu d'un filetage à l'avant conformément à DIN 332/2.


Les éléments de fixation conviennent pour des arbres pleins sans épaulement (I) ou avec épaulement (II). Lors de la fixation selon I, l'arbre plein est fixé de manière axiale avec un circlip dans l'arbre creux (Pos.A). Lors de la fixation selon II, l'arbre plein est maintenu axialement avec son épaulement directement sur l'arbre creux (Pos.B).

- 1. Arbre creux
- 2. Rondelle
- 3. Vis à tête cylindrique DIN 912
- 4. Rondelle élastique DIN 127
- 5. * Rondelle de pression
- 6. * Écrou à embase
- 7. Circlip DIN 472

- 8. * Vis de dégagement
- 9. Arbre du client
- Suggestion, ne fait pas partie de la livraison.

Montage:

- 1. Introduire l'arbre du client dans l'arbre creux (Pos. 1)
- 2. Place la rondelle (Pos. 2) dans l'arbre creux
- 3. Fixer la rondelle avec la vis à tête cylindrique (Pos. 3) et la rondelle élastique (Pos. 4)

Condition préalable :

- L'arbre du client doit être pourvu d'un filetage à l'avant conformément à DIN 332/2.
- Pour la variante II, l'arbre à insérer ne doit pas dépasser la cote « L » car il serait dans ce cas impossible d'utiliser les éléments de démontage (Pos. 5,6,7).

Démontage :

Pour la fixation selon II (arbre plein avec épaulement), nous préconisons l'utilisation d'un élément de desassemblage pour faciliter le démontage :

- 1 Desserrer la vis à tête cylindrique (Pos. 3)
- 2. Retirer la rondelle (Pos. 2)
- 3. Poser la rondelle de pression (Pos. 5)
- 4. Placer l'écrou à embase (Pos.6)
- 5. Circlip (Pos. 7)
- 6. En vissant la vis de dégagement (Pos.8), retirer l'arbre du client de l'arbre creux.

Éléments de fixation

Réducteur à arbres parallèles

Туре	1	2		3	4	5	5		6		7	8	9
	d x mH	а	D			d2	s	d3	s3				L
SK 0182 NBB	25 x 100	19	38	M10 x 45	A 10	24,9	3	24,9	12	M10	I 25 x 1,5	M10	79
SK 0282 NBB	30 x 122	19	40	M10 x 45	A 10	29,9	3	29,9	12	M12	I 30 x 1,5	M12	100
SK 1382 NBB	35 x 176	23,5	45	M12 x 55	A 12	34,9	3	34,9	16	M16	I 35 x 1,75	M16	149
SK 1282B	30 x 122	19	40	M10 x 45	A 10	29,9	3	29,9	12	M12	I 30 x 1,2	M12	100
SK 2282B	35 x 139	23,5	45	M12 x 55	A 12	34,9	3	34,9	16	M16	I 35 x 1,5	M16	110
SK 3282B	40 x 174	23,7	55	M16 x 70	A 16	39,9	4	39,9	16	M16	I 40 x 1,75	M16	140
SK 4282B	50 x 195	24,7	65	M16 x 70	A 16	49,9	4	49,9	20	M20	I 50 x 2,0	M20	160
SK 5282B	60 x 230	29	75	M20 x 90	A20	59,9	5	59,9	24	M24	I 60 x 2,0	M24	185
SK 6282B	70 x 290	29,3	95	M20 x 90	A20	69,9	5	69,9	24	M24	I 70 x 2,5	M24	245
SK 7282B	80 x 310	29	102	M20 x 100	A20	79,9	8	79,9	30	M30	I 80 x 2,5	M30	250
SK 8282B	100 x 366	34,5	120	M24 x 110	A24	99,9	8	99,9	30	M30	I 100 x 3,0	M30	310
SK 9282B	120 x 430	34,5	150	M24 x 110	A24	119,9	10	119,9	32	M36	I 120 x 4,0	M36	370
SK 10282B	160 x 516	34	200	M24 x 110	A24	159,9	10	159,9	31	M36	I 160 x 4,0	M36	450
SK 11282B	180 x 546	34	240	M24 x 110	A24	179,9	10	179,9	31	M36	I 180 x 5,0	M36	480
SK 12382B	180 x 546	34	240	M24 x 110	A24	179,9	10	179,9	31	M36	I 180 x 5,0	M36	480

Les données présentées s'appliquent aussi aux réducteurs à arbres parallèles avec des nombres d'étages plus élevés ⇒ □A49

Réducteur à couple conique

1	2	2	3	4	5	5		6		7	8	9
d x mH	а	D			d2	s	d3	s3				L
25 x 116	19 19	38 38	M10 x 45	A10	24,9 24.9	3	24,9 24.9	12 12	M12	l 25 x 1,5	M12 M12	94 94
20 x 134	14	30	M6 x 30	A 6	19,9	3	19,9	10	M10	I 20 x 1,5	M10	110
30 x 164	19	40	M10 x 45	A10	29,0	3	29,0	12	M12	I 30 x 1,5	M12	115 140
		-					-					140
35 x 170	23,5	45	M12 x 55	A12	34,9	3	34,9	16	M16	1 35 x 1,75	M12	140
40 x 192 40 x 192	24 24	55 55	M16 x 70 M16 x 70	A16 A16	39,9 39,9	4 4	39,9 39,9	16 16	M16 M16	I 40 x 2,0 I 40 x 2,0	M16 M16	160 160
30 x 148 35 x 148	19 23,5	40 45	M10 x 45 M12 x 55	A10 A12	29,0 34,9	3	29,0 34,9	12 16	M12 M16	I 30 x 1,5 I 35 x 1,5	M12 M16	120 120
30 x 148 40 x 148	19 24	40 55	M10 x 45 M16 x 70	A10 A16	29,0 39.9	3 4	29,0 39.9	12 16	M12 M16	I 30 x 1,5	M12 M16	120 120
35 x 180	23,5 24	45 55	M12 x 55	A12 A16	34,9	3	34,9	16 16	M16 M16	l 35 x 1,5	M12 M16	150 150
40 x 210	24	55	M16 x 70	A16	39,9	4	39,9	16	M16	I 40 x 2,0	M16	170 170
50 x 240	25	65	M16 x 70	A16	49,9	4	49,9	20	M20	I 50 x 2,5	M20	200 195
60 x 300	29	75	M20 x 90	A20	59,9	5	59,9	24	M24	I 60 x 3,0	M24	255 255
90 x 350	34	102	M24 x 110	A24	89,9	8	89,9	30	M30	I 90 x 4,0	M30	290 290
100 x 420	34,5	120	M24 x 110	A24	99,9	8	99,9	30	M30	I 100 x 4,0	M30	365 360
110 x 500	34	135	M24 x 110	A24	109,9	10	109,9	30	M30	I 110 x 5,0	M30	440 440
120 x 610	34	150	M24 x 110	A24	119,9	10	119,9	35	M36	I 120 x 5,0	M36	550 550
160 x 674	34	200	M24 x 110	A24	159,9	10	159,9	34	M36	I 160 x 4,0	M36	605 605
	d x mH 25 x 116 25 x 116 25 x 116 20 x 134 25 x 138 30 x 164 30 x 164 35 x 170 40 x 192 40 x 192 30 x 148 35 x 148 35 x 148 30 x 148 35 x 180 40 x 180 40 x 210 50 x 240 60 x 240 60 x 300 70 x 300 90 x 350 90 x 350 100 x 420 110 x 500 120 x 500 120 x 610 150 x 610	d x mH a 25 x 116 25 x 116 19 19 20 x 134 25 x 138 19 30 x 164 30 x 164 19 19 35 x 170 23,5 35 x 170 23,5 35 x 170 23,5 23,5 35 x 170 23,5 40 x 192 40 x 192 24 24 40 x 192 24 30 x 148 19 40 x 148 24 19 23,5 40 x 180 24 40 x 192 25 24 25 x 180 24 25 x 180 24 25 40 x 210 25 24 25 60 x 240 29 60 x 300 29,5 90 x 350 90 x 350 34 100 x 420 34,5 110 x 500 34,5 110 x 500 34,5 120 x 610 34 150 x 610 34 120 x 610 34 150 x 610 34 160 x 674 34	d x mH a D 25 x 116 25 x 116 25 x 116 38 20 x 134 20 x 134 19 38 30 x 164 19 30 x 164 19 40 35 x 170 23,5 45 35 x 170 23,5 45 40 x 192 24 55 30 x 148 35 x 148 23,5 30 x 148 23,5 30 x 148 23,5 35 x 180 24 55 35 x 180 24 55 35 x 180 25 65 65 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29	d x mH a D 25 x 116 25 x 116 25 x 116 38 38 M10 x 45 30 x 134 30 x 164 30 x 164 30 x 164 19 40 M10 x 45 35 x 170 35 x 170 23,5 35 x 170 23,5 45 M12 x 55 35 x 170 23,5 45 M12 x 55 35 x 170 23,5 45 M12 x 55 M16 x 70 40 x 192 24 55 M16 x 70 40 x 192 24 55 M16 x 70 M10 x 45 35 x 148 23,5 30 x 148 23,5 30 x 148 24 55 M16 x 70 M10 x 45 M12 x 55 M16 x 70 M10 x 45 M12 x 55 M16 x 70 M10 x 45 M12 x 55 M16 x 70 M16 x 70 35 x 180 40 x 180 40 x 210 24 55 M16 x 70 M16 x 410 M10 x 420 M16 x 4110 M10 x 420 M16 x 4110 M16 x 610 M16 x	d x mH a D 25 x 116 19 38 M10 x 45 A10 25 x 116 19 38 M10 x 45 A10 20 x 134 14 30 M6 x 30 A 6 25 x 138 19 38 M10 x 45 A10 30 x 164 19 40 M10 x 45 A10 30 x 164 19 40 M10 x 45 A10 35 x 170 23,5 45 M12 x 55 A12 35 x 170 23,5 45 M12 x 55 A12 40 x 192 24 55 M16 x 70 A16 40 x 192 24 55 M16 x 70 A16 30 x 148 19 40 M10 x 45 A10 35 x 148 23,5 45 M12 x 55 A12 30 x 148 19 40 M10 x 45 A10 35 x 180 23,5 45 M12 x 55 A12 40 x 180 24 55 M16 x 70	d x mH a D d2 25 x 116 19 38 M10 x 45 A10 24,9 25 x 116 19 38 M10 x 45 A10 24,9 20 x 134 14 30 M6 x 30 A 6 19,9 25 x 138 19 38 M10 x 45 A10 24,9 30 x 164 19 40 M10 x 45 A10 29,0 30 x 164 19 40 M10 x 45 A10 29,0 35 x 170 23,5 45 M12 x 55 A12 34,9 35 x 170 23,5 45 M12 x 55 A12 34,9 40 x 192 24 55 M16 x 70 A16 39,9 40 x 192 24 55 M16 x 70 A16 39,9 30 x 148 19 40 M10 x 45 A10 29,0 35 x 180 23,5 45 M12 x 55 A12 34,9 40 x 188 24 55 M16	d x mH a D d2 s 25 x 116 19 38 M10 x 45 A10 24,9 3 25 x 116 19 38 M10 x 45 A10 24,9 3 20 x 134 14 30 M6 x 30 A6 19,9 3 25 x 138 19 38 M10 x 45 A10 24,9 3 30 x 164 19 40 M10 x 45 A10 29,0 3 30 x 164 19 40 M10 x 45 A10 29,0 3 35 x 170 23,5 45 M12 x 55 A12 34,9 3 40 x 192 24 55 M16 x 70 A16 39,9 4 40 x 192 24 55 M16 x 70 A16 39,9 4 40 x 192 24 55 M16 x 70 A16 39,9 4 40 x 192 24 55 M16 x 70 A16 39,9 4	d x mH a D d2 s d3 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 20 x 134 14 30 M6 x 30 A 6 19,9 3 19,9 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 35 x 170 23,5 45 M12 x 55 A12 34,9 3 34,9 35 x 170 23,5 45 M12 x 55 A12 34,9 3 34,9 40 x 192 24 55 M16 x 70 A16 39,9 4 39,9 40 x 192 24 55 M16 x 70 A16 39,9 4 39,9 30 x 148 19 40 M10 x 45 A10 29,0	d x mH a D d2 s d3 s3 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 20 x 134 14 30 M6 x 30 A6 19,9 3 19,9 10 25 x 138 19 38 M10 x 45 A10 24,9 3 24,9 12 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 12 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 12 35 x 170 23,5 45 M12 x 55 A12 34,9 3 34,9 16 40 x 192 24 55 M16 x 70 A16 39,9 4 39,9 16 40 x 192 24 55 M16 x 70 A16 39,9 4	d x mH a D d2 s d3 s3 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 20 x 134 14 30 M6 x 30 A6 19,9 3 19,9 10 M10 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 12 M12 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 12 M12 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 12 M12 35 x 170 23,5 45 M12 x 55 A12 34,9 3 34,9 16 M16 40 x 192 24 55 M16 x 70 A16 39,9 4 39,9 16 M16 </td <td>dx mH a D d2 s d3 s3 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 125 x 1,5 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 125 x 1,5 20 x 134 14 30 M6 x 30 A6 19,9 3 19,9 10 M10 120 x 1,5 25 x 138 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 125 x 1,5 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 12 M12 130 x 1,5 35 x 170 23,5 45 M12 x 55 A12 34,9 3 34,9 16 M16 135 x 1,75 40 x 192 24 55 M16 x 70 A16 39,9 4 39,9 16 M16 140 x 2,0 40 x 192</td> <td>d x mH a D d2 s d3 s3 Leading 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 125 x 1,5 M12 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 125 x 1,5 M12 20 x 134 14 30 M6 x 30 A6 19.9 3 19,9 10 M10 120 x 1,5 M12 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 12 M12 130 x 1,5 M12 35 x 170 23,5 45 M12 x 55 A12 34,9 3 34,9 16 M16 130 x 1,5 M12 40 x 192 24 55 M16 x 70 A16 39,9 4 39,9 16 M16 140 x 2,0 M16 40 x 192 24 55 M16 x 70 A16 39,9 <td< td=""></td<></td>	dx mH a D d2 s d3 s3 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 125 x 1,5 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 125 x 1,5 20 x 134 14 30 M6 x 30 A6 19,9 3 19,9 10 M10 120 x 1,5 25 x 138 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 125 x 1,5 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 12 M12 130 x 1,5 35 x 170 23,5 45 M12 x 55 A12 34,9 3 34,9 16 M16 135 x 1,75 40 x 192 24 55 M16 x 70 A16 39,9 4 39,9 16 M16 140 x 2,0 40 x 192	d x mH a D d2 s d3 s3 Leading 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 125 x 1,5 M12 25 x 116 19 38 M10 x 45 A10 24,9 3 24,9 12 M12 125 x 1,5 M12 20 x 134 14 30 M6 x 30 A6 19.9 3 19,9 10 M10 120 x 1,5 M12 30 x 164 19 40 M10 x 45 A10 29,0 3 29,0 12 M12 130 x 1,5 M12 35 x 170 23,5 45 M12 x 55 A12 34,9 3 34,9 16 M16 130 x 1,5 M12 40 x 192 24 55 M16 x 70 A16 39,9 4 39,9 16 M16 140 x 2,0 M16 40 x 192 24 55 M16 x 70 A16 39,9 <td< td=""></td<>

Les données présentées s'appliquent aussi aux réducteurs à couple conique avec des nombres d'étages plus élevés ⇒ △A50

Éléments de fixation

Réducteur à roue et vis

Туре	1	2		3	4	ţ	5		6		7	8	9
	d x mH	а	D			d2	s	d3	s3				L
SK 02040 AZB	20 x 120	14	30	M6 x 30	A 6	19,9	3	19,9	10	M10	I 20 x 1,5	M10	100
SK 02050 AZB	25 x 132	19	38	M10 x 45	A10	24,9	3	24,9	12	M12	I 25 x 1,2	M12	110
	30 x 132	19	40	M10 x 45	A10	29,9	3	29,9	12	M12	I 30 x 1,2	M12	110
SK 12063 AZB	30 x 148	19	40	M10 x 45	A10	29,9	3	12	12	M12	I 35 x 1,5	M12	125
	35 x 148	23,5	45	M12 x 55	A12	34,9	3	16	16	M16	I 40 x 1,75	M16	120
SK 12080 AZB	40 x 168	24	55	M16 x 70	A16	39,9	4	39,9	16	M16	I 40 x 1,75	M16	135
	45 x 168	25	60	M16 x 70	A16	44,9	4	44,9	16	M16	I 45 x 2,0	M16	135
SK 32100 AZB	50 x 202	25	65	M16 x 70	A16	49,9	4	49,9	20	M20	I 50 x 2,0	M20	165
	60 x 202	29	75	M20 x 70	A20	59,9	5	59,9	24	M24	I 60 x 2,0	M24	155
SK 42125 AZB	60 x 250	29	75	M20 x 90	A20	59,9	5	59,9	24	M24	I 60 x 2,0	M24	205
	70 x 250	29	95	M20 x 90	A20	69,9	5	69,9	24	M24	I 70 x 2,5	M24	205

Les données présentées s'appliquent aussi aux réducteurs à roue et vis avec des nombres d'étages plus élevés ⇒ △A51

Roulements et arbre de sortie renforcés VL2/VL3

VL2

NORD propose, notamment pour les agitateurs, des roulements renforcés sur l'arbre de sortie ayant une portée entre roulements importante pour absorber d'importants efforts axiaux et radiaux et augmenter la durée de vie des paliers.

Les **roulements à tonneaux** conviennent parfaitement pour de grands arbres d'agitateurs étant donné que les défauts d'alignement sont en partie corrigés.

Disque anti-fuite d'huile Roulement à tonneaux Capteur d'huile

Option VL3

Exécution "DRYWELL", comme VL2 avec en supplément un disque anti-fuite d'huile et un témoin de fuite d'huile ou un capteur d'huile.

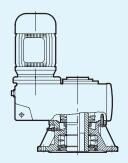
Fonction de sécurité

En cas de fuites éventuelles sur les deux bagues d'étanchéité inférieures de l'arbre de sortie, l'huile parvient par l'intermédiaire du déflecteur jusqu'à la chambre de récupération de la bride « DRYWELL » et est signalée par un capteur d'huile. Les bagues d'étanchéité doivent alors être remplacées afin d'éviter un écoulement dans la cuve d'agitation.

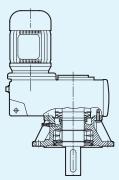
Calcul de la durée de vie des paliers sur demande.

Pour le calcul, les valeurs suivantes sont requises :

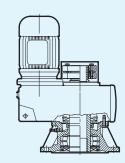
- Puissance nominale P [kW]
 Vitesse de sortie n₂ [min⁻¹]
- Effort axial
- Effort radial
- Distance entre l'action de la force et le support de bride
- Durée de vie souhaitée pour les paliers
- Couples de flexion

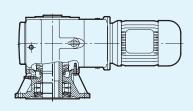

F_Δ [N]

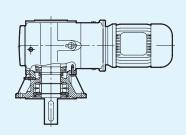
 F_R [N]


C [mm]

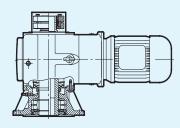
L_h [h] M_b [Nm]


Motoréducteurs à arbres parallèles


SK ...82 AF(B) VL2 mm ⇒ □ C115 SK ...82 AF(B) VL3 ⊢→



SK ..82 VF VL2 mm ⇒ ☐ C116 SK ..82 VF VL3



Motoréducteurs à engrenages coniques

SK 90...1 VF VL2 mm ⇒ □D116 SK 90...1 VF VL3

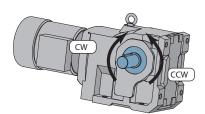
SK 90...1 AFSH VL2 mm ⇒ □D117 SK 90...1 AFSH VL3

Antidévireurs

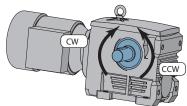
En option, il est possible de monter des antidévireurs qui permettent un fonctionnement dans un seul sens de rotation et bloquent l'autre sens.


Les moteurs triphasés à partir de la taille 80 et les lanternes avec arbre d'entrée libre ($\Rightarrow \square A37$, au marquage RLS) peuvent être équipés d'un antidévireur graissé. Ces antidévireurs se soulèvent par la force centrifuge, à une vitesse $n_1 > \text{env. } 900 \text{ min}^{-1}$ et fonctionnent ensuite sans usure.

Les réducteurs à couple conique SK 9012.1, SK 9022.1 ... SK 9096.1 peuvent être livrés en série avec un antidévireur intégré dans le réducteur. La lubrification de l'antidévireur est réalisée par le remplissage du réducteur en huile.


Les lanternes IEC 132 ... 315 pour les réducteurs à partir des tailles SK 62/6282/9072.1 peuvent être équipées en tant qu'exécutions spéciales avec un antidévireur. Les réducteurs plus petits avec des lanternes IEC plus petites sont également possibles en tant qu'exécutions spéciales avec un antidévireur dans la lanterne IEC. Veuillez nous contacter.

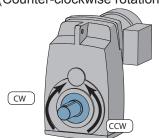
Pour les entraînements avec antidévireur, il est nécessaire d'indiquer le sens de rotation de l'arbre de sortie. Le **sens de rotation** est donné en se plaçant côté arbre de sortie.


CW = Rotation dans le sens horaire, rotation à droiteCCW = Rotation dans le sens anti-horaire, rotation à gauche

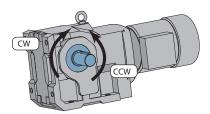
Motoréducteur à engrenages cylindriques

Côté B motoréducteur à couple conique

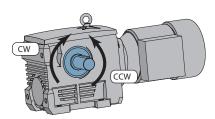
Côté B motoréducteur à roue et vis


Pour les réducteurs perpendiculaires, c'est la position de l'arbre de sortie (A ou B, ⇒ □ A56) qui détermine le côté choisi pour le sens de rotation. Pour déterminer le sens de rotation, on se place toujours du côté de la broche de l'arbre de sortie. Pour les réducteurs à arbres creux avec frette de serrage, la broche de l'arbre de commande se trouve sur le côté opposé à la frette de serrage. Pour les réducteurs à arbres creux avec clavette ou profil cannelé et si l'arbre plein est présent des deux côtés, on se place du côté A du réducteur perpendiculaire.

Attention au risque de casse! Avant la mise en service de l'installation, vérifier le sens de rotation du moteur et du réducteur. Les flèches sur le réducteur indiquent le sens de rotation.


(Auparavant, le sens de blocage était indiqué à la place du sens de rotation :

Sens de blocage : à gauche = I →sens de rotation CW Sens de blocage : à droite = II →sens de rotation CCW)


(Clockwise rotation) (Counter-clockwise rotation)

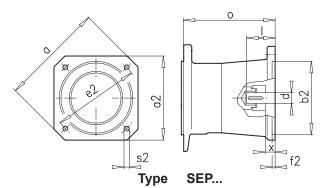
Motoréducteur à arbres parallèles

Côté A motoréducteur à engrenages coniques

Côté A motoréducteur à roue et vis

Sens de rotation du moteur ou de l'arbre d'entrée

Sens de rotation du moteur si vue côté capot du ventilateur ou arbre d'entrée si vue côté de la broche de l'arbre d'entrée


Type de réducteur	Sens de rotation de l'arbre de sortie CW	Sens de rotation de l'arbre de sortie CCW
Réducteur à engrenages cylindriques à 1 étages : SK11E à SK51E	Sens de rotation du moteur CW	Sens de rotation du moteur CCW
Réducteur à engrenages cylindriques à 2 étages : SK02 à SK102	Sens de rotation du moteur CCW	Sens de rotation du moteur CW
Réducteur à engrenages cylindriques à 3 étages : SK03 à SK103	Sens de rotation du moteur CW	Sens de rotation du moteur CCW
Réducteur à arbres parallèles à 2 étages : SK0182NB à SK11282	Sens de rotation du moteur CCW	Sens de rotation du moteur CW
Réducteur à arbres parallèles à 3 étages : SK1382NB à SK12382	Sens de rotation du moteur CW	Sens de rotation du moteur CCW
Réducteur à couple conique à 2 étages : SK92072 à SK92772	Sens de rotation du moteur CCW	Sens de rotation du moteur CW
Réducteur à couple conique à 3 étages : SK9012.1 à SK9096.1	Sens de rotation du moteur CW	Sens de rotation du moteur CCW
Réducteur à couple conique à 4 étages : SK9013.1 à SK9053.1	Sens de rotation du moteur CCW	Sens de rotation du moteur CW
Réducteur à roue et vis à 2 étages : SK02040 à SK42125 Position de l'arbre de sortie en A ou frette de serrage en B	Sens de rotation du moteur CW	Sens de rotation du moteur CCW
Réducteur à roue et vis à 2 étages : SK02040 à SK42125 Position de l'arbre de sortie en B ou frette de serrage en A	Sens de rotation du moteur CCW	Sens de rotation du moteur CW
Réducteur à roue et vis à 3 étages : SK13050 à SK43125 Position de l'arbre de sortie en A ou frette de serrage en B	Sens de rotation du moteur CCW	Sens de rotation du moteur CW
Réducteur à roue et vis à 3 étages : SK13050 à SK43125 Position de l'arbre de sortie en B ou frette de serrage en A	Sens de rotation du moteur CW	Sens de rotation du moteur CCW

^{⇒ □} A31 - sens de rotation

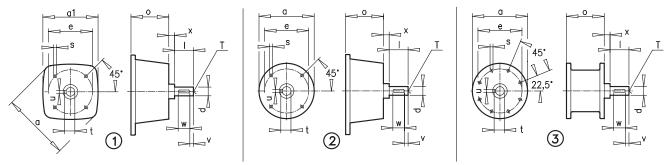
Dans le cas des réducteurs à couple conique, il est possible sur demande d'appliquer un sens de rotation de l'arbre de sortie différent de l'exécution standard indiquée dans le tableau ci-dessus, étant donné que la roue en couronne peut être montée à gauche ou à droite du pignon conique. Pour cela, un arbre de sortie spécial est nécessaire pour la version à arbre plein d'un côté et pour la version à frette de serrage.

Lanterne pour le montage de servomoteurs

La vitesse du servomoteur maximale autorisée correspond à 4000 min-1. Pour choisir le réducteur adapté dans le cas d'un entraînement avec un servomoteur, des connaissances spécifiques relatives à l'application sont nécessaires.

Veuillez nous consulter afin que nous puissions sélectionner ensemble le réducteur.

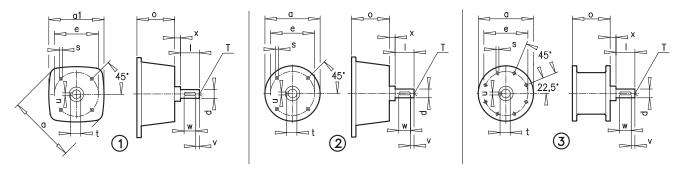
Lanternes livrables


Type de réducteur	Cotes du montage moteur						ır	Cotes de l'arbre		Vérin	Type de moteur	M _{knenn}	Type de lanterne	
	а	a2	b2	e2	f2	s2	х	d	ı	O	Par ex. :	[Nm]		
SK 02, SK 12 SK 1282 SK 9012.1, SK 9016.1, SK 9022.1 SK 02050, SK 12063, SK 12080	120	96	80	100	4	M6	15	19	40	125	HJ96 1 FK6 04 1 FK7 04	17	Servo 100 / 160 S	
SK 02, SK 12 SK 1282 SK 9012.1, SK 9016.1, SK 9022.1 SK 02050, SK 12063, SK 12080	165	126	110	130	4	M8	20	24	50	137	HJ116 1 FK6 06 1 FK7 06	60	Servo 130 / 160 S	
SK 22, SK 32 SK 2282, SK 3282 SK 9032.1 SK 32100	155	126	110	130	4	M8	20	24	50	151	HJ116 1 FK6 06 1 FK7 06	60	Servo 130 / 250 S	
SK 02, SK 12 SK 1282 SK 9012.1, SK 9016.1, SK 9022.1 SK 02050, SK 12063, SK 12080	186	155	130	165	5	M10	23	32	58	152	MSK070 MSK071 1 FK6 08 1 FK7 08 HJ 155	160	Servo 165 / 160 S	
SK 22, SK 32 SK 2282, SK 3282 SK 9032.1 SK 32100	186	155	130	165	5	M10	23	32	58	167	MSK070 MSK071 1 FK6 08 1 FK7 08 HJ155	160	Servo 165 / 250 S	
SK 22, SK 32 SK 2282, SK 3282 SK 9032.1 SK 32100	240	192	180	215	5	M12	45	38	80	188	MSK101 1 FK6 10 1 FK7 10	160	Servo 215 / 250 S	
SK 42, SK 52 SK 4282, SK 5282 SK 9042.1, SK 9052.1 SK 42125	240	192	180	215	5	M12	24	38	80	230	MSK101 1 FK6 10 1 FK7 10	525	Servo 215 / 300 S	
SK 42, SK 52 SK 4282, SK 5282 SK 9042.1, SK 9052.1 SK 42125	350	260	250	300	5	M16	26	48	82	232	1 FT6 13 1 FK7 10	525	Servo 300 / 300 S	
SK 62, SK 72, SK 82, SK 92 SK 6282, SK 7282, SK 8282, SK 9282 SK 9072.1, SK 9082.1, SK 9086.1, SK 9092.1, SK 9096.1	350	260	250	300	5	M16	26	48	82	250	1 FT6 13 1 FK7 10	525	Servo 300 / 350	

Pour les lanternes servo de type SEP présentées ci-dessus, l'accouplement pour servomoteurs est exécuté avec une clavette. Pour les servomoteurs sans clavette, la lanterne servo de type SEK peut être livrée avec un manchon d'accouplement de serrage.

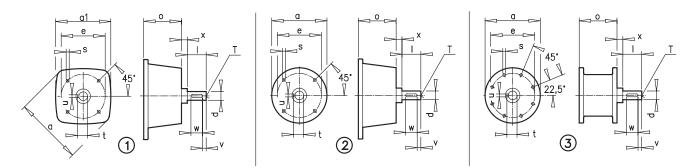
Pour un grand nombre de types de servomoteurs, il est possible de réaliser le montage à l'aide d'une lanterne IEC via une bride intermédiaire. Veuillez nous consulter.

Lanterne avec arbre d'entrée libre - réducteur à engrenages cylindriques



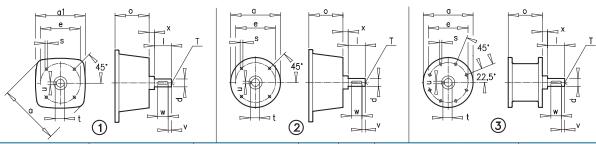
					① ②	a a1	е	s	d	t	٧	X T
					3	aı	0		•	u	W	
SK 11E W0	SK 02 W0 SK 12 W0	SK 03 W0 SK 13 W0 SK 23 W0 SK 33N W0	SK/02 W0 SK/12 W0 SK/23 W0		2	90 	75 70,5	M5 x 13	14 38,5	16 5	5 30	2 M5
SK 11E WII	SK 02 WII SK 12 WII	SK 03 WII SK 13 WII SK 23 WII SK 33N WII	SK/02 WII SK/12 WII SK/23 WII	RLS	2	120 	100 74,0	M8 x 13	16 40	18 5	4 32	8 M5
SK 21E WIII SK 31E WIII	SK 22 WIII SK 32 WIII	SK 43 WIII SK 53 WIII	SK/22 WIII SK/32 WIII SK/43 WIII SK/53 WIII		2	120 	100 113,5	M8 x 13	16 40	18 5	4 32	8 M5
SK 11E WIII	SK 02 WIII SK 12 WIII	SK 03 WIII SK 13 WIII SK 23 WIII SK 33N WIII	SK/02 WIII SK/12 WIII SK/23 WIII		2	150 	125 119,5	M8 x 13	24 50	27 8	5 40	8 M8
SK 21E WI SK 31E WI	SK 22 WI SK 32 WI	SK 43 WI SK 53 WI	SK/22 WI SK/32 WI SK/43 WI SK/53 WI		1	180 140	125 113,5	M8 x 13	24 50	27 8	5 40	8 M8
SK 41E WIV SK 51E WIV	SK 42 WIV SK 52 WIV	SK 63 WIV	SK/42 WIV SK/52 WIV		1	180 140	125 124	M8 x 13	24 50	27 8	5 40	8 M8
SK 21E WII SK 31E WII	SK 22 WII SK 32 WII	SK 43 WII SK 53 WII	SK/22 WII SK/32 WII SK/43 WII SK/53 WII	RLS	1	180 140	150 113,5	M10 x 18	28 60	31 8	5 50	9 M10
SK 41E WI SK 51E WI	SK 42 WI SK 52 WI	SK 63 WI	SK/42 WI SK/52 WI		1	180 140	150 124	M10 x 16	28 60	31 8	5 50	9 M10
	SK 62 W0 SK 72 W0	SK 73 W0 SK 83 W0 SK 93 W0			2	180 	150 124	M10 x 18	28 60	31 8	5 50	9 M10
SK 41E WII SK 51E WII	SK 42 WII SK 52 WII	SK 63 WII	SK/42 WII SK/52 WII	RLS	1	290 250	215 125	M12 x 20	38 80	41 10	5 70	8 M12
	SK 62 WI SK 72 WI SK 82 W0	SK 73 WI SK 83 W SK 93 WII SK 103 W0			1	290 250	215 170	M12 x 25	38 80	41 10	5 70	8 M12
SK 41E WIII SK 51E WIII	SK 42 WIII SK 52 WIII	SK 63 WIII	SK/42 WIII SK/52 WIII		1	290 250	250 125	M16 x 25	38 80	41 10	5 70	8 M12
	SK 62 WII SK 72 WII SK 82 WII	SK 73 WII SK 83 WI SK 93 WIII SK 103 WII			1	290 250	250 170	M16 x 25	38 80	41 10	5 70	8 M12

RLS ⇒ 🕮 A31 - 32

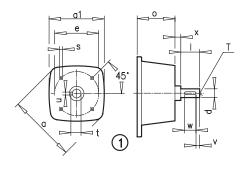

Lanterne avec arbre d'entrée libre - réducteur à engrenages cylindriques

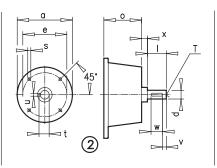
			① ② ③	a a1	e o	s	d I	t u	v w	X T
	62 WIII SK 73 WIII 72 WIII SK 83 WIII SK 93 WIII	RLS	1	290 250	250 170	M16 x 25	42 110	45 12	10 90	8 M16
SK SK	62 WIV SK 73 WIV 72 WIV SK 83 WIV 82 WV SK 93 WIV 92 WV SK 103 WIV		1	350 300	300 252	M20 x 30	65 140	69 18	15 110	8 M20
SK	82 WI SK 103 WI 92 WI 102 WI		1	350 300	250 236	M16 x 25	42 110	45 12	10 90	8 M16
SK	82 WIII SK 103 WIII 92 WIII 102 WIII	RLS	1	350 300	300 236	M20 x 30	65 140	69 18	15 110	8 M20

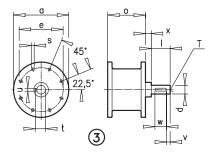
Lanterne avec arbre d'entrée libre - réducteur à arbres parallèles


				① ② ③	a a1	e o	S	d I	t u	v w	x T
SK 0182NB W0 SK 0282NB W0	SK 1382NB W0			2	120 	75 61,5	M5 x 11	14 40	16 5	5 30	8 M5
SK 0182NB WII SK 0282NB WII	SK 0182NB WII			2	120 	100 61,5	M8 x 11	16 40	18 5	4 32	8 M5
SK 1282 W0	SK 2382 W0 SK 3382 W0	SK/02 W0 SK/12 W0		2	90	75 70,5	M5 x 13	14 38,5	16 5	5 30	2 M5
SK 1282 WII	SK 2382 WII SK 3382 WII	SK/02 WII SK/12 WII	RLS	2	120 	100 74	M8 x 13	16 40	18 5	4 32	8 M5
SK 2282 WIII SK 3282 WIII	SK 4382 WIII SK 5382 WIII	SK/22 WII SK/32 WII		2	120	100 113,5	M8 x 13	16 40	18 5	4 32	8 M5
SK 1282 WII	SK 2382 WIII SK 3382 WIII	SK/02 WIII SK/12 WIII		2	150	125 119,5	M8 x 13	24 50	27 8	5 40	8 M8
SK 2282 WI SK 3282 WI	SK 4382 WI SK 5382 WI	SK/22 WI SK/32 WI		1	180 140	125 113,5	M8 x 13	24 50	27 8	5 40	8 M8
SK 4282 WIV SK 5282 WIV	SK 6382 WIV	SK/42 WIV SK/52 WIV	D. C	1	180 140	125 124	M8 x 13	24 50	27 8	5 40	8 M8
SK 2282 WII SK 3282 WII SK 4282 WI	SK 4382 WII SK 5382 WII SK 6382 WI	SK/22 WII SK/32 WII SK/42 WI	RLS	1	180 140 180	150 113,5 150	M10 x 18	28 60 28	31 8 31	5 50 5	9 M10 9
SK 4262 WI SK 5282 WI SK 6282 W0	SK 7382 W0	SK/52 WI		2	140	124 150	M10 x 18	60	8 31	50 5	M10 9
SK 7282 W0	SK 8382 W0 SK 9382 W0			_		124	WIO X IO	60	8	50	M10
SK 4282 WII SK 5282 WII	SK 6382 WII	SK/42 WII SK/52 WII	RLS	1	290 250	215 125	M12 x 20	38 80	41 10	5 70	8 M12
SK 6282 WI SK 7282 WI	SK 7382 WI SK 8382 WI SK 9382 WI			1	290 250	215 170	M12 x 25	38 80	41 10	5 70	8 M12
SK 4282 WIII SK 5282 WIII	SK 6382 WIII	SK/42 WIII SK/52 WIII		1	290 250	250 125	M16 x 25	38 80	41 10	5 70	8 M12
SK 6282 WII SK 7282 WII SK 8282 WII	SK 7382 WII SK 8382 WII SK 9382 WII	SK 10382 WII SK 11382 WII		1	290 250	250 170	M16 x 25	38 80	41 10	5 70	8 M12
SK 6282 WIII SK 7282 WIII	SK 7382 WIII SK 8382 WIII SK 9382 WIII		RLS	1	290 250	250 170	M16 x 25	42 110	45 12	10 90	8 M16
SK 6282 WIV SK 7282 WIV SK 8282 WV	SK 7382 WIV SK 8282 WIV SK 9382 WIV SK 10382 WV			1	350 300	300 252	M20 x 30	65 140	69 18	15 11 0	8 M20
SK 8282 WI SK 9282 WI	SK 10382 WI SK 11382 WI SK 12382 WI			1	350 300	250 236	M16 x 25	42 110	45 12	10 90	8 M16
SK 8282 WIII SK 9282 WIII	SK 11382 WIII SK 10382 WIII SK 12382 WIII		RLS	1	350 300	250 236	M20 x 30	65 140	69 18	15 11 0	8 M20
SK 8282 WIV SK 9282 WIV	SK 11382 WIV SK 10382 WIV SK 12382 WIV			3	550 	500 245	Ø 17,5	65 140	69 18	15 11 0	12 M20

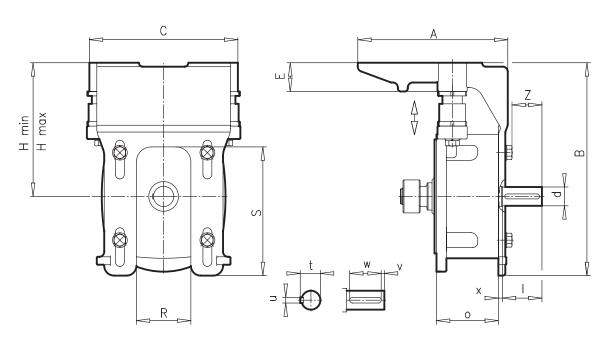
RLS ⇒ 🕮 A31 - A32


Lanterne avec arbre d'entrée libre - réducteur à couple conique




Y	(1) = v		2)		³ v		(3)		₩V		
				① ② ③	a a1	e o	s	d I	t u	v w	x T
SK 92072 W0 SK 92172 W0 SK 92372 W0 SK 92672 W0 SK 92772 W0				2	120 	75 61,5	M5 x 11	14 40	16 5	5 30	56 M5
SK 92072 WII SK 92172 WII SK 92372 WII SK 92672 WII SK 92772 WII				2	120	100 61,5	M8 x 11	16 40	18 5	4 32	8 M5
SK 9012.1 W0 SK 9016.1 W0 SK 9022.1 W0	SK 9013.1 W0 SK 9017.1 W0 SK 9023.1 W0 SK 9033.1 W0			2	90	75 70,5	M5 x 13	14 38,5	16 5	5 30	2 M5
SK 9012.1 WII SK 9016.1 WII SK 9022.1 WII	SK 9013.1 WII SK 9017.1 WII SK 9023.1 WII SK 9033.1 WII		RLS	2	120 	100 74	M8 x 13	16 40	18 5	4 32	8 M5
SK 9032.1 WIII	SK 9043.1 WIII SK 9053.1 WIII	SK/32 WIII		2	120 	100 113,5	M8 x 13	16 40	15 8	4 32	8 M5
SK 9012.1 WIII SK 9016.1 WIII SK 9022.1 WIII	SK 9013.1 WIII SK 9017.1 WIII SK 9023.1 WIII SK 9033.1 WIII			2	150 	125 119,5	M8 x 13	24 50	27 8	5 40	8 M8
SK 9032.1 WI	SK 9043.1 WI SK 9053.1 WI	SK/32 WI		1	180 140	125 113,5	M8 x 13	24 50	27 8	5 40	8 M8
SK 9042.1 WIV SK 9052.1 WIV		SK/42 WIV SK/52 WIV		1	180 140	125 124	M8 x 13	24 50	27 8	5 40	8 M8
SK 9032.1 WII	SK 9043.1 WII SK 9053.1 WII	SK/32 WII	RLS	1	180 140	150 113,5	M10 x 18	28 60	31 8	5 50	9 M10
SK 9042.1 WI SK 9052.1 WI		SK/42 WI SK/52 WI		1	180 140	150 124	M10 x 16	28 60	31 8	5 50	9 M10
SK 9072.1 W0				2	180 	150 124	M10 x 18	28 60	31 8	5 50	9 M10
SK 9042.1 WII SK 9052.1 WII		SK/42 WII SK/52 WII	RLS	1	290 250	215 125	M12 x 20	38 80	41 10	5 70	8 M12
SK 9072.1 WI				1	290 250	215 170	M12 x 25	38 80	41 10	5 70	8 M12
SK 9042.1 WIII SK 9052.1 WIII		SK/42 WIII SK/52 WIII		1	290 250	250 125	M16 x 25	38 80	41 10	5 70	8 M12
SK 9072.1 WII SK 9082.1 WII SK 9086.1 WII				1	290 250	250 170	M16 x 25	38 80	41 10	5 70	8 M12
SK 9072.1 WIII			RLS	1	290 250	250 170	M16 x 25	42 110	45 12	10 90	8 M16
SK 9072.1 WIV SK 9082.1 WIV SK 9086.1 WIV				1	350 300	300 252	M20 x 30	65 140	69 18	15 110	8 M20
SK 9082.1 WI SK 9086.1 WI SK 9092.1 WI SK 9096.1 WI				1	350 300	250 236	M16 x 25	42 110	45 12	10 90	8 M16
SK 9082.1 WIII SK 9086.1 WIII SK 9092.1 WIII SK 9096.1 WIII			RLS	1	350 300	300 236	M20 x 30	65 140	69 18	15 110	8 M20
SK 9082.1 WIV SK 9086.1 WIV SK 9092.1 WIV SK 9096.1 WIV			RLS	3 ⇒ 🕮 A	550 31 - A	500 245 32	Ø 17,5	65 140	69 18	15 110	12 M20
				0 150							A 2.7

Lanterne avec arbre d'entrée libre - réducteur à roue et vis



			① ② ③	а	a1	е	O	s	d I	t u	v w	x T
SK 02040 W0			2	120		75	61,5	M5 x 11	14 40	16 5	5 30	8 M5
SK 02040 WII			2	120		100	61,5	M8 x 11	16 40	18 5	4 32	8 M5
SK 02050 W0 SK 12063 W0 SK 12080 W0	SK 13050 W0 SK 13063 W0 SK 13080 W0 SK 33100 W0		2	90		75	70,5	M5 x 13	14 38,5	16 5	5 30	2 M5
SK 02050 WII SK 12063 WII SK 12080 WII	SK 13050 WII SK 13063 WII SK 13080 WII SK 33100 WII	RLS	2	120		100	74	M8 x 13	16 40	18 5	4 32	8 M5
SK 32100 WIII	SK 43125 WIII		2	120		100	113,5	M8 x 13	16 4	18 5	4 32	8 M5
SK 02 WIII SK 12063 WIII SK 12080 WIII	SK 13050 WIII SK 13063 WIII SK 13080 WIII SK 33100 WIII		2	150		125	119,5	M8 x 13	24 50	27 8	5 40	8 M8
SK 32100 WI	SK 43125 WI		1	180	140	125	113,5	M8 x 13	24 50	27 8	5 40	8 M8
SK 42125 WIV			1	180	140	125	124	M8 x 13	24 50	27 8	5 40	8 M8
SK 32100 WII	SK 43125 WII	RLS	1	180	140	150	113,5	M10 x 8	28 60	31 8	5 50	9 M10
SK 42125 WI			1	180	140	150	124	M10 x 16	28 60	31 8	5 50	9 M10
SK 42125 WII		RLS	1	290	250	215	125	M12 x 20	38 80	41 10	5 70	8 M12
SK 42125 WIII			1	290	250	250	125	M16 x 25	38 80	41 10	5 70	8 M12

RLS ⇒ 🕮 A31 - A32

Consoles moteur - cotes

			Encombrements et dimensions de raccordement							ıt	Cotes de l'arbre			re		
	Туре	Α	В	С	E	R	S	H min	H max.	Z	0	d I	t u	v w	х	Bride
MKI	63 S - 100 AH	222	253	204	45	60	140	153	173	41	119,5	24 50	27 8	5 40	8	160 S
MK II	80 SH - 112 MH	236	320	250	50	66	145	199	224	48	113,5	28 60	31 8	5 50	9	250 S
MK III -	- 1 90 SH - 132 MH	303	430	300	58	110	260	254	286	61	125	38 80	41 10	5 70	8	300 S
MK III -	- 2 90 SH - 132 MH	303	430	300	58	110	260	254	286	91	170	42 110	45 12	10 90	8	Ø 250
MK IV	112 MH - 200 LH	476	530	400	75	130	315	315	355	116	252	65 140	69 18	15 110	8	Ø 350
MK V	200 LH - 280 MH	662	690	570	105	382	369	465	515	119	245	65 140	69 18	15 110	12	Ø 450

Consoles moteur - affectation

					63 S 63 L	71 S 71 L	80 SH 80 LH	90 SH 90 LH	100 LH 100 AH	112 MH	132 SH 132 MH
SK 11 E SK 12	SK 1282	SK 9012.1 SK 9016.1 SK 9022.1	SK 02050 SK 12063 SK 12080	W III	MKI	MK I	MKI	MK I	MKI		
SK 21 E SK 31 E SK 22 SK 32	SK 2282 SK 3282	SK 9032.1	SK 32100	WII			MK II	MK II	MK II	MK II	
SK 41 E SK 51 E SK 42 SK 52 SK 63	SK 4282 SK 5282 SK 6382	SK 9042.1 SK 9052.1	SK 42125	WIII				MK III-1	MK III-1	MK III-1	MK III-1
SK 62 SK 72 SK 73 SK 83	SK 6282 SK 7282 SK 7382 SK 8382 SK 9382	SK 9072.1		WIII				MK III-2	MK III-2	MK III-2	MK III-2
							112 MH	132 SH 132 MH	160 MH 160 LH 160 SH	180 MH 180 LH	200 LH
SK 62 SK 72 SK 73 SK 83	SK 6282 SK 7282 SK 7382 SK 8382 SK 9382	SK 9072.1		W IV					MK IV	MK IV	MK IV
SK 93				WIV			MK IV	MK IV	MK IV	MK IV	MK IV
SK 82 SK 92 SK 103	SK 8282 SK 9282 SK 10382	SK 9082.1		WV			MK IV	MK IV	MK IV	MK IV	MK IV
		SK 9086.1		WV			MK IV	MK IV	MK IV	MK IV**	MK IV**
					200 LH	225 SH 225 MH	250 MH	280 SH 280 MH			
SK 93	SK 9382			WV		MK V	MK V	MK V			
SK 82 SK 92 SK 103	SK 8282 SK 9282 SK 10382	SK 9082.1 SK 9086.1		WIV		MK V	MK V	MK V			
SK 102	SK 11382 SK 12382	SK 9092.1 SK 9096.1		WIV	MK V	MK V	MK V	MK V			

** plage de variation limitée

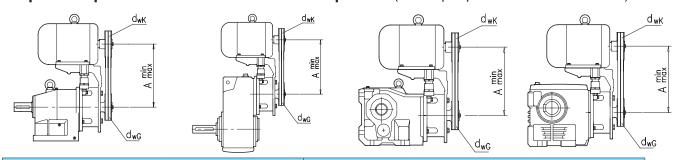
Exemple de sélection :

En fonction de la vue d'ensemble des puissances et vitesses ou du tableau des puissances et des rapports de réduction, vous déterminez le type de base du réducteur selon la puissance et la vitesse de sortie souhaitées.

Par ex. : page B4 - B40 Réducteur à engrenages cylindriques

4 kW, 86 min⁻¹, i = 16,66

donne le type de base du réducteur SK 32 - 112 MH/4 ou SK 32 - IEC 112.

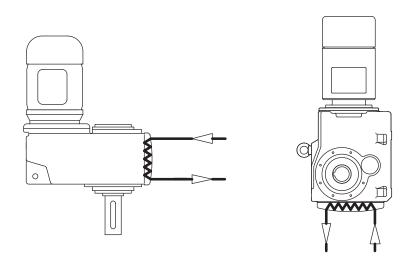

Pour le type de base du réducteur, sélectionnez la console moteur **MK II** dans le tableau (voir ci-dessus). La désignation complète du type est alors **SK 32 - MK II - 112**.

La tableau pour **MK II** ($\Rightarrow \square$ A41) donne des informations complémentaires sur les poulies et le type de courroie. Les dimensions de base figurent dans le tableau ($\Rightarrow \square$ A39).

Consoles moteur

Proposition pour le choix de courroies et de poulies (ne font pas partie de la livraison NORD)

	MKI			٦	Гуре de courroie SP	Z
Moteur	Puissance	Plage de	variation	Longueur de courroie	Entraxe	Nombre de courroies
	[kW]	A _{min}	A _{max}	(dwg = 80) (i=1) Lw	Α	
63 S/4 63 L/4 71 S/4 71 L/4 80 SH/4 80 LH/4 90 SH/4 90 LH/4	0,12 0,18 0,25 0,37 0,55 0,75 1,10 1,50 2,20	216 216 224 224 233 233 243 243 253	236 236 244 244 253 253 263 263 273	697 697 710 710 737 737 750 750	223 223 229 229 243 243 249 249	1 1 1 1 1 1 1 2 2
110 AH/4	3,00 MK I	253	273	772	260 Type de courroie XP	3
	[kW]		۸	(dwg = 112) (i=1) Lw	A	
80 SH/4 80 LH/4 90 SH/4 90 LH/4 100 LH/4 100 AH/4 112 MH/4	0,55 0,75 1,10 1,50 2,20 3,00 4,00	A _{min} 279 279 289 289 299 299 311	304 304 314 314 324 324 336	930 930 950 950 980 980 1000	289 289 299 299 314 314 324	1 1 1 1 1 2 2
	MKII			٦	Type de courroie SP	Z
	[kW]	A _{min}	A _{max}	(dwg = 160) (i=1) Lw	A	
90 SH/4 90 LH/4 100 LH/4 100 AH/4 112 MH/4 132 SH/4 132 MH/4	1,10 1,50 2,20 3,00 4,00 5,50 7,50	344 344 354 354 366 386 386	376 376 386 386 398 418 418	1222 1222 1250 1250 1262 1312 1312	360 360 374 374 380 405 405	1 1 1 2 2 2 3
	MK I	V			Type de courroie XP	Ά
	[kW]	A _{min}	A _{max}	(dwg = 200) (i=1) Lw	А	
112 MH/4 132 SH/4 132 MH/4 160 SH/4 160 MH/4 160 LH/4 180 MH/4 180 LH/4 200 LH/4	4,00 5,50 7,50 9,20 11,0 15,0 18,5 22,0 30,0	427 447 447 475 475 475 495 495 515	467 487 487 515 515 515 535 535 535	1500 1550 1550 1600 1600 1600 1650 1650	436 461 461 486 486 486 511 511	1 1 2 2 2 2 3 3 4 4
	MK \	/			Type de courroie SP	Α
	[kW]	A _{min}	A _{max}	(dwg = 250) (i=1) Lw	Α	
200 LH/4 225 SH/4 225 MH/4	30,0 37,0 45,0	665 690 690	715 740 740	2182 2207 2207	698 710 710	4 4 5
	MK \				Type de courroie SP	В
	[kW]	A _{min}	A _{max}	(dwg = 250) (i=1) Lw	Α	
250 MH/4 280 SH/4 280 MH/4	55,0 75,0 90,0	715 745 745	765 795 795	2240 2310 2310	727 762 762	4 5 5


Refroidissement par l'eau

Il est possible d'obtenir en option un échangeur thermique intégré pour les réducteurs à arbres parallèles et les réducteurs à couple conique. L'échangeur thermique est traversé par l'eau réfrigérée et refroidit le réducteur. Il est recommandé d'utiliser une surveillance de température ou une surveillance du débit d'eau réfrigérée. Comme le serpentinderefroidissementn'estpas dans le compartiment d'huile, le système de refroidissement à eau NORD est très sûr (modèle déposé en Allemagne 20 2005 005 452.6).

Le refroidissement par l'eau convient également pour les zones à atmosphère explosible (ATEX).

Pour un fonctionnement en basses températures, un réchauffement du réducteur peut également être réalisé avec l'échangeur thermique.

Serpentin de refroidissement interne au réducteur sur demande.

Positions de montage possibles avec le refroidissement par l'eau

Dádustour à arbres parallèles	Position de montage										
Réducteur à arbres parallèles	M1	M2	М3	M4	M5	M6					
SK 6282 / SK 6382	✓	✓		✓	✓	✓					
SK 7282 / SK 7382	✓	✓		✓	✓	✓					
SK 8282 / SK 8382	✓	✓		✓	✓	✓					
SK 9282 / SK 9382	✓	✓		✓	✓	✓					
SK 10282 / SK 10382	✓	✓		✓	✓	✓					
SK 11282 / SK 11382 / SK 12382	✓	✓		✓	✓	✓					

Dádustous à comple continue	Position de montage									
Réducteur à couple conique	M1	M2	М3	M4	M5	M6				
SK 9072.1 *			✓	✓						
SK 9082.1			✓	✓						
SK 9086.1			✓	✓						
SK 9092.1			✓	✓						
SK 9096.1			✓	✓						

^{*} uniquement disponible dans la variante AF(B), AZ... et VF, VZ ⇒ □ D92, D93, D110

Lubrifiants

Avant la mise en service et lors d'un stockage prolongé, il est impératif de retirer la mèche de la vis d'évent pour éviter des fuites dues à une surpression à l'intérieur du réducteur.

Les réducteurs et motoréducteurs sont remplis de lubrifiant et ainsi prêts à fonctionner lors de la livraison, à l'exception des types SK 11282, SK 11382 et SK 12382. Le remplissage initial est effectué avec un lubrifiant indiqué dans le tableau suivant, pour des températures ambiantes définies (modèle standard). Pour d'autres températures ambiantes, les lubrifiants indiqués sont préconisés et fournis avec un supplément de prix.

Pour un remplissage à l'huile minérale, une vidange du lubrifiant doit avoir lieu toutes les 10 000 heures de service ou après deux ans. Pour les produits synthétiques, ces intervalles sont doublés.

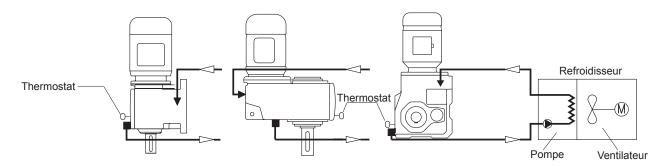
Dans des conditions de fonctionnement extrêmes, telles que par exemple une humidité de l'air élevée, un environnement agressif et de fortes variations de températures, des intervalles réduits entre les vidanges sont préférables.

Il est recommandé de profiter de la vidange pour effectuer un nettoyage complet du réducteur.

Après un remplacement de lubrifiant et en particulier, après le remplissage initial, le niveau d'huile peut légèrement changer lors des premières heures de fonctionnement, étant donné que les conduits de l'huile

et les cavités se remplissent lentement, et ce, seulement à partir de la mise en service. Le niveau d'huile reste cependant compris dans l'intervalle de tolérance autorisé.

Si à la demande du client, un voyant de niveau d'huile est installé (supplément de prix), nous recommandons de corriger le niveau d'huile après une durée de fonctionnement d'env. 2 heures, de sorte que celui-ci soit visible dans le voyant une fois que le réducteur est arrêté et refroidi. À partir de ce moment-là seulement, la vérification du niveau d'huile est possible en utilisant le voyant.


Les réducteurs sont normalement remplis d'huile minérale. De l'huile synthétique peut être livrée avec un supplément de prix.

Remarque : ne pas mélanger des lubrifiants synthétiques et minéraux ! Cette consigne s'applique également pour l'élimination des lubrifiants.

Les quantités de remplissage indiquées sont données à titre d'information. Les valeurs précises varient selon le rapport de réduction. Lors du remplissage, utilisez impérativement la vis de niveau d'huile pour vérifier la quantité exacte d'huile. Les tableaux des pages ⇒ △A66-A73 donnent des valeurs indicatives en litres pour le remplissage en lubrifiant des réducteurs en fonction de leur position de montage ou de leur forme.

Les réducteurs SK 11282, SK 11382, SK 12382 et SK 9096.1 sont normalement livrés sans huile.

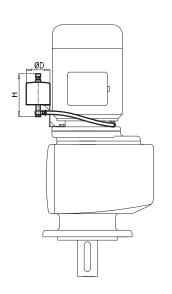
Refroidisseur d'huile

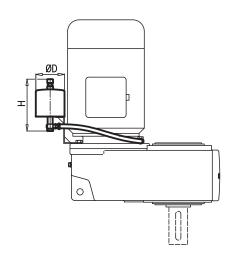
■ Vidange = conduite d'aspiration

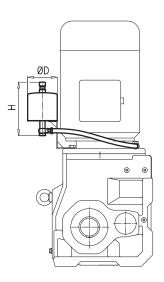
▼ Niveau d'huile = conduite de refoulement

L'huile du réducteur est aspirée par une pompe et traverse un échangeur thermique. Le refroidissement de l'huile est assuré par le flux d'air produit par le ventilateur. L'huile en sortie de l'échangeur thermique est dirigée de nouveau dans le carter.

La régulation de la température est assurée par un thermostat. Il est recommandé d'utiliser une surveillance de température.




Réservoir d'expansion d'huile pour la position de montage M4 avec moteur vertical vers le haut


Les réducteurs avec un moteur positionné à la verticale en haut ou avec un arbre d'entrée ont un niveau d'huile élevé pour la lubrification du premier étage de réducteur. L'emploi d'un vase d'expansion d'huile disponible en option empêche un éventuel écoulement d'huile par la vis d'évent, pour la position de montage verticale M4 (\$\Rightarrow \mathbb{A}\$59) en cas de formation de mousse à la surface de l'huile.

NORD recommande donc vivement d'utiliser un vase d'expansion d'huile pour des rapports de réduction i $_{\rm ges}$ < 20 et avec les réducteurs à engrenages cylindriques à partir de SK42, les réducteurs à arbres parallèles à partir de SK4282 à SK 8282 et les réducteurs à couple conique à partir de SK 9042.1, si la position de montage est verticale M4. Nous déclinons toute garantie si ceci n'est pas respecté.

Même pour les tailles de réducteurs inférieures et pour les autres types de réducteurs tels que les réducteurs à roue et vis, NORD recommande d'utiliser un vase d'expansion de l'huile pour les rapports de réduction i_{ges} < 20 et des vitesses de moteur supérieures à 1800 min⁻¹ (caractéristique 87 Hz).

Réducteur à engrenages cylindriques

Réducteur à arbres parallèles

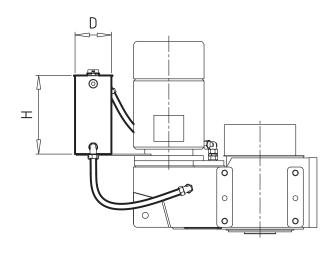
Réducteur à couple conique

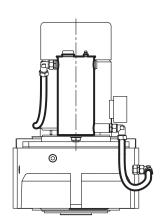
Réducteur à engrenages cylindriques	Réducteur à arbres parallèles	Réducteur à couple conique	Dimension	D [mm]	H [mm]	[kg]
SK 42 / SK 43 SK 52 / SK 53 SK 63	SK 4282 / SK 4382 SK 5282 / SK 5382 SK 6382	SK 9042.1 / SK 9043.1 SK 9052.1 / SK 9053.1	I	100	180	5
SK 62 SK 72 / SK 73	SK 6282 SK 7282 / SK 7382	SK 9072.1 SK 9082.1	П	150	300	6
SK 82 / SK 83 SK 92 / SK 93 SK 102 / SK 103	SK 8282 / SK 8382	SK 9086.1 SK 9092.1 SK 9096.1	III	180	300	7

Les réducteurs à arbres parallèles plus grands à partir de la taille SK9282 ont en série des réservoirs de niveau d'huile, dans la position de montage verticale M4 (⇒ △ A45).

Réservoir de niveau d'huile pour la position de montage M4 avec moteur vertical vers le haut

Les réservoirs de niveau d'huile sont placés au-dessus du réducteur et augmentent le niveau d'huile de façon à ce que le niveau dans le réservoir se situe toujours au-dessus de celui du réducteur. Étant donné que toutes les pièces en rotation du réducteur se trouvent complètement en dessous du niveau d'huile, l'émulsion et la formation de mousse d'huile sont ainsi empêchées. De plus, dans cette configuration verticale, tous les roulements fonctionnent en étant baignés dans l'huile.


Les réservoirs de niveau d'huile sont plus grands que les réservoirs d'expansion d'huile et disposent, en raison de la conduite d'évacuation supplémentaire, de deux conduites d'huile qui relient le réservoir au réducteur. Le niveau d'huile doit être contrôlé dans le réservoir de niveau d'huile.


NORD recommande vivement d'utiliser les réservoirs de niveau d'huile NORD pour les grandes tailles de réducteurs à arbres parallèles SK 9282 à SK 12382 en position de montage verticale M4 (\$\Rightarrow\$\Rightarrow\$A59). Nous déclinons toute garantie si ceci n'est pas respecté.

En standard, le réservoir de niveau d'huile est livré sous forme de kit comprenant la tuyauterie de lubrification, le matériel de fixation et les instructions de montage. Ainsi, le réducteur peut être transporté de manière plus économique et plus sûre. De plus, la position du réservoir de niveau d'huile peut être déterminée sur place lors du montage. Des informations détaillées sur les possibilités de positionnement et les dimensions des réservoirs de niveau d'huile sont disponibles sur simple demande (WN 0-521 31).

Les types de réducteurs à arbres parallèles SK9282 / SK9382 et SK10282 / SK10382 sont livrés en standard avec la quantité d'huile indiquée à la page A60. Lors de la mise en service, une quantité d'huile supplémentaire d'env. 30 litres doit être ajoutée dans le réservoir, afin d'augmenter le niveau d'huile jusqu'au réservoir. La livraison standard est effectuée sans cette quantité d'huile supplémentaire. Un récipient d'huile correspondant peut toutefois être fourni sur demande, avec un supplément de prix.

Les types de réducteurs à arbres parallèles SK11282 / SK11382 et SK12382 sont livrés en standard sans huile. En cas d'utilisation d'un réservoir de niveau d'huile, la quantité d'huile requise augmente d'env. 40 litres par rapport à la quantité d'huile indiquée à la page ⇒ △A68-69.

Type de réducteur	Dimension	D [mm]	H [mm]	Quantité d'huile supplémentaire [L]	Volume du réservoir [L]
SK 9282 / SK 9382 SK 10282 / SK 10382	Ι	185	390	env. 30	10
SK 11282 / SK 11382 SK 12382	II	320	390	env. 40	30

Types de lubrifiants

Remarque:

ce tableau compare les lubrifiants des différents fabricants. Il est possible de changer de fabricant à condition de conserver la viscosité et le type de lubrifiant. En cas de changement de type de lubrifiant ou de viscosité, veuillez nous consulter car la fonctionnalité de nos réducteurs risquerait d'en être altérée et dans ce cas, notre garantie ne pourrait pas s'appliquer.

Type de lubrifiant	Indication sur la plaque signalétique		bp	©Castrol	FUCHS	KLÖBER LUBRICATION	Mobil	Shell
Huile minérale	CLP 680	Réducteur à roue et vis sans fin ISO VG 680 040 °C	Energol GR-XP 680	Alpha EP 680 Alpha SP 680 Optigear BM 680 Tribol 1100/680	Renolin CLP 680 CLP 680 Plus	Klüberoil GEM 1-680N	Mobilgear 600 XP 680	Omala S2 G 680
	CLP 220	ISO VG 220 -1040 °C Version standard	Energol GR-XP 220	Alpha EP 220 Alpha SP 220 Optigear BM 220 Tribol 1100/220	Renolin CLP 220 CLP 220 Plus	Klüberoil GEM 1-220N	Mobilgear 600 XP 220	Omala S2 G 220
	CLP 100	ISO VG 100 -1525 °C	Energol GR-XP 100	Alpha EP 100 Alpha SP 100 Optigear BM 100 Tribol 1100/100	Renolin CLP 100 CLP 100 Plus	Klüberoil GEM 1-100N	Mobilgear 600 XP 100	Omala S2 G 100
Huile synthétique (polyglycol)	CLP PG 680	Réducteur à roue et vis sans fin ISO VG 680 -2040 °C Version standard	-	Alphasyn GS 680 Tribol 800/680	Renolin PG 680	Klübersynth GH 6-680	Mobil Glygoyle 680	Omala S4 WE 680
	CLP PG 220	ISO VG 220 -2580 °C	Enersyn SG-XP 220	Alphasyn GS 220 Alphasyn PG 220 Tribol 800/220	Renolin PG 220	Klübersynth GH 6-220	Mobil Glygoyle 220	Omala S4 WE 220
Huile synthétique (hydrocarbures)	CLP HC 460	Réducteur à roue et vis sans fin ISO VG 460 * -3080 °C	-	Alphasyn EP 460 Tribol 1510/460 Optigear Synthetic X 460	Renolin Unisyn CLP 460	Klübersynth GEM 4-460N	Mobil SHC 634	Omala 460 S4 GX
	CLP HC 220	ISO VG 220 * -4080 °C	-	Alphasyn EP 220 Tribol 1510/220 Optigear Synthetic X 220	Renolin Unisyn CLP 220	Klübersynth GEM 4-220N	Mobil SHC 630	Omala S4 GX 220
Huile biodégradable	CLP E 680	Réducteur à roue et vis sans fin ISO VG 680 -540 °C	-	-	Plantogear 680 S	-	-	-
	CLP E 220	Réducteur à roue et vis sans fin ISO VG 220 -540 °C	-	Tribol Bio Top 1418/220	Plantogear 220 S	Klübersynth GEM 2-220	-	Naturelle Gear Fluid EP 220
Huile alimentaire 1)	CLP PG H1 680	ISO VG 680 -540 °C	-	Tribol FoodPoof 1800/680	-	Klüberoil UH1-680N	Mobil Glygoyle 680	Cassida Fluid WG 680
	CLP PG H1 220	ISO VG 220 -2540 °C	-	Tribol FoodPoof 1800/220	-	Klübersynth UH1 6-220	Mobil Glygoyle 220	Cassida Fluid WG 220
	CLP HC H1 680	ISO VG 680 -540 °C		Optileb GT680	Geralyn SF 680	Klüberoil 4 UH1-680N	-	Cassida Fluid GL 680
	CLP HC H1 220	ISO VG 220 -2540 °C	-	Optileb GT 220	Geralyn SF 220	Klüberoil 4 UH1-220N	Mobil SHC Cibus 220	Cassida Fluid GL 220
Graisse fluide pour réducteur GP 00 K-30			Ener- grease LS-EP 00	Longtime PD 00 Tribol 3020/1000-00**	Renolit Duraplex EP00	Microlube GB 00 (-2090/150°C)	Mobil Chassis Grease LBZ	Alvania EP(LF)2
Lubrifiant à base de polyglycols GP PG 00 K-30			-		Renolit LST 00	Klübersynth GE 46-1200	Mobil Glygoyle Grease 00	
Lubrifiant à base de poly-alpha- oléfine GP HC 00 K-30			-	-	-	Klübersynth UH1 14-1600 ¹⁾	Mobilith SHC 007	Cassida RLS 00

- Au-dessus de 60°C, des bagues d'étanchéité aux matériaux spéciaux doivent être appliquées.
- Dans le cas de vitesses très faibles Huiles alimentaires + graisses conformes à la directive H1 / FDA 178.3570 1)

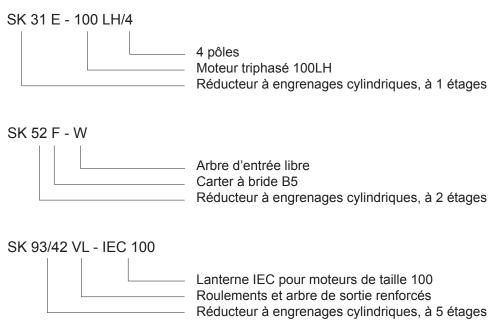
Lubrifiants pour paliers à roulement

Type de lubrifiant selon DIN 51502	Température ambiante	Tempéra- ture ambiante	bp	⊜ Castrol	FUCHS	KLÖBER LUBRICATION	Mobil	Shell
Graisse à base d'huile minérale								
K2K-20 ou KP2K-20	-20 à 60°C	-20120°C	Energrease LS2-EP2	Spheerol EPL 2	Renolit GP 2	-	-	Alvania EP(LF)2 Alvania RL2 (K2N-20)
K 2 K -30 ou KP 2 K -30 Graisse à base d'huile minérale	-30 à 60°C (normal)	-30120 °C	-	Longtime PD 2	Renolit GP 2 Renolit LZR 2H	-	Mobilux EP 2	-
K 2 G -50 ou KP 2 G -50 Graisse basse température **	*-50 40°C	-50100 °C	-	-	Renocal FN 745/94	Isoflex Topas L152	-	-
KP 1 K -50	-	-50120°C	-	-	Renolit JP 1619	-	-	-
K 2 K -50	-	-50120°C	-	Optitemp LG2		-	-	-
Graiss	ses synthétique	es						
KP PG 2 N-30 Lubrifiant à base de polyglycols	*-2580 °C	-30140°C	-	-	Renolit LST 2	-	-	-
KP HC 2 K-30	-	-30120°C	-	-	-	Petamo GHY 133N (K HC 2P-30)	-	Cassida EPS2
KP HC 2 N-40 Lubrifiant à base de poly-alpha- oléfine	-25 80°C	-40140°C	-	Spheerol SY 2202	Renolit HLT 2	Isoflex Topas NCA 52 Klüberplex BEM 41-132	Mobilith SHC 220	-
KP HC 2 P-40		-40160°C	Energrease SY2202	Tribol 4747	-	-	-	-
K HC 1 E-50	-5080°C	-5080°C	-	-	-	-	-	Cassida LTS1 (PAO, HSF H1)
Graisse rap	idement biodég	ıradable						
KP E 2 K-30 ou K E 2 K-30	-2540 °C	-30120°C	Biogrease EP 2	-	-	-	-	Naturelle Grease EP2
KP E 2 K-40		-40120°C	-	-	Plantogel 2 S	-	Mobil SHC Grease 102 EAL	-
KP E 2 N -40		-40140°C	-	-	-	Klüberbio M 72-82	-	-
Huile alimentaire selon H1/FDA								
K 2 K -30 ou KP 2 K -30	-2540 °C	-30120°C	-	Obeen UF2	-	Klübersynth UH1 14-151(222)	Mobilgrease FM 222	Cassida RLS 2
K 2 N -20 ou KP 2 N -20		-20140°C	-	-	Renolit G7 FG1	-	-	-
KP HC 2 K-30	-2540 °C	-30120°C	-	-	-	-	-	Cassida RLS 2 Cassida EPS 2

^{*} Pour des températures ambiantes inférieures à -30°C ou supérieures à 60°C, des bagues d'étanchéité de qualité particulière doivent être appliquées.

Tenez compte du fait que les graisses ayant des bases savonneuses différentes ne doivent pas être mélangées. En cas de changement de types de graisse, il convient de demander conseil au fournisseur de lubrifiants.

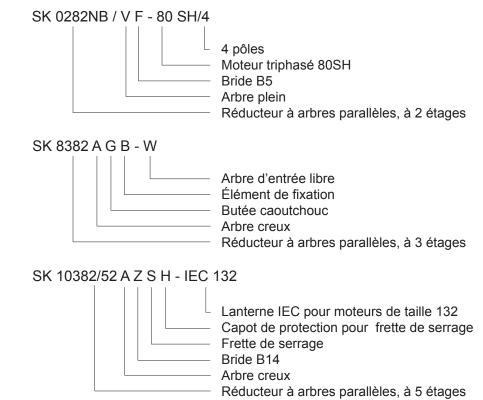
^{**} Graisses à base d'huile minérale ou huiles de base pouvant être mélangées avec de l'huile minérale (PAO, HC, ester)


Spécificités

Réducteur à engrenages cylindriques

Tailles

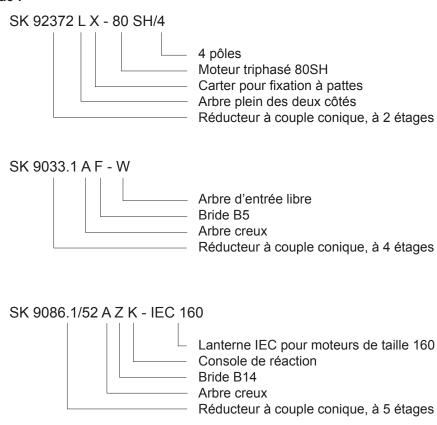
1 étages	2 étages 3 étages		4 étages	5 étages	6 étages
				Réducteur double	
	SK 02	SK 03			
SK 11 E	SK 12	SK 13	SK 12/02		
SK 21 E	SK 22	SK 23	SK 22/02		
SK 31 E	SK 32	SK 33 N	SK 32 / 12		
SK 41 E	SK 42	SK 43	SK 42 / 12		
SK 51 E	SK 52	SK 53	SK 52 / 12		
	SK 62	SK 63		SK 63 / 22	SK 63 / 23
	SK 72	SK 73		SK 73/22, SK 73/32	SK 73 / 23
	SK 82	SK 83		SK 83/42, SK 83/52	SK 83/33 N
	SK 92	SK 93		SK 93/42, SK 93/52	SK 93 / 43
	SK 102	SK 103		SK 103 / 52	SK 103 / 53


Spécificités

Réducteur à arbres parallèles

Tailles

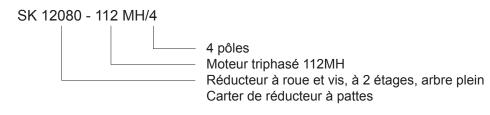
2 étages	3 étages	4 étages	5 étages
		Réducte	eur double
SK 0182 NB			
SK 0282 NB			
SK 1282	SK 1382 NB	SK 1282/02	
SK 2282	SK 2382	SK 2282/02	
SK 3282	SK 3382	SK 3282 / 12	
SK 4282	SK 4382	SK 4282 / 12	
SK 5282	SK 5382	SK 5282 / 12	
SK 6282	SK 6382		SK 6382/22, SK 6382/32
SK 7282	SK 7382		SK 7382/22, SK 7382/32
SK 8282	SK 8382		SK 8382/42, SK 8382/52
SK 9282	SK 9382		SK 9382/42, SK 9382/52
SK 10282	SK 10382		SK 10382 / 52
SK 11282	SK 11382		SK 11382 / 52
	SK 12382		

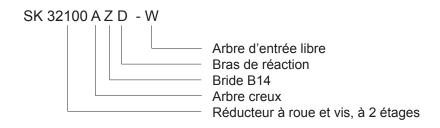

Spécificités

Réducteur à couple conique

Tailles

2 étages	3 étages	4 étages	5 étages	6 étages
			Réducteur double	
SK 92072	SK 9012.1	SK 9013.1		
SK 92172	SK 9016.1	SK 9017.1		
SK 92372	SK 9022.1	SK 9023.1		
SK 92672	SK 9032.1	SK 9033.1		
SK 92772	SK 9042.1	SK 9043.1		
	SK 9052.1	SK 9053.1		
	SK 9072.1		SK 9072.1/42, SK 9072.1/52	
	SK 9082.1		SK 9082.1/42, SK 9082.1/52	
	SK 9086.1		SK 9086.1 / 52	
	SK 9092.1		SK 9092.1 / 52	
	SK 9096.1		SK 9096.1 / 62	SK 9096.1 / 63


Spécificités


Réducteur à roue et vis

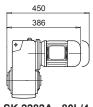
Tailles

2 étages	3 étages
SK 02040	
SK 02050	SK 13050
SK 12063	SK 13063
SK 12080	SK 13080
SK 32100	SK 33100
SK 42125	SK 43125

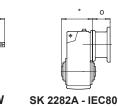
Informations relatives aux dessins cotés, motoréducteurs et réducteurs

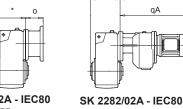
La réalisation simple de dessins CAO (dessins cotés, dessins d'encombrement et modèles 3D) est possible « en ligne » sur Internet grâce au logiciel NORDCAD mis au point par NORD!

Exemple supplémentaire pour les dessins cotés

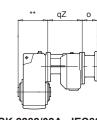

Les motoréducteurs sont cotés directement sur le dessin.

Pour les réducteurs


- avec carter additionnel
- en tant que réducteur double
- avec arbre d'entrée libre (W)
- pour le montage de moteurs normalisés (IEC)


les valeurs des différents dessins cotés doivent être ajoutées.

Exemple : réducteur à arbres parallèles SK 2282A



SK 2282A - 80L/4

⇒ C80 ⇒ QC105

□ C80 □ C105

⇒ C80 □ C101 qΑ gABre ⇒ C101

qABre

SK 2282/02A - W ⇒ Q C80 ⇒ C101 qz ⇒ 🕮 C104

SK 2282/02A - IEC80 ⇒ 🕮 C80 □ C101 qz □ C104 0

Remarques générales pour * et ** :

*) Pour les exécutions W ou IEC, si plusieurs valeurs avec « * » sont mentionnées sur les dessins cotés, seule la valeur qui n'est pas entre parenthèses est en principe à prendre en considération. La valeur du tableau ci-dessous doit être ajoutée ou soustraite pour les types de réducteurs W ou IEC correspondants.

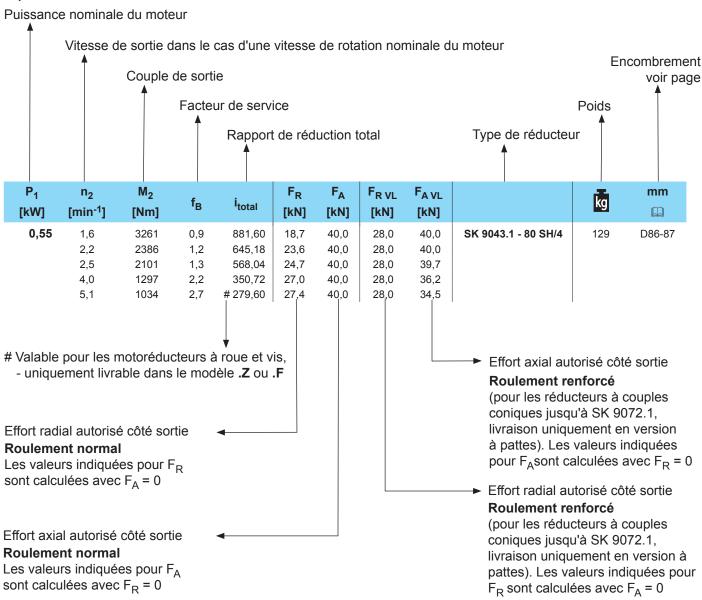
Туре	[mm]										
	W	CEI 100	CEI 112	CEI 132	CEI 160	CEI 180	CEI 200	CEI 225	CEI 250	CEI 280	CEI 315
SK 82	16	-	-	-	-	-	-	-	16	16	-
SK 92	14	_	-	-	-	-	_	-	14	14	14
SK 93	0	-	-	-	-	-	-	-	14	14	-
SK 103	16	-	-	-	-	-	-	-	16	16	16
SK 8282	15	_	-	_	-	-	-	-	15	15	-
SK 9282	15	-	-	-	-	-	-	-	15	15	15
SK 9382	0	-	-	-	-	-	-	-	15	15	-
SK 10382	16	-	-	-	-	-	-	-	16	16	16
SK 11382	9	-	-	-	-	-	-	-	-	-	9
SK 12382	9	-	-	-	-	-	-	-	-	-	9
SK 9072.1	-18	-18	-18	-18	-18	-18	-18	-18	_	-	-
SK 9082.1	-20	_	-	-	-	-	_	-	-20	-20	8
SK 9086.1	-20	-	-	-	-	-	-	-	-20	-20	8
SK 9092.1	16	-	-	-	-	-	-	-	-16	-16	-11
SK 9096.1	0	-	-	-	-	-13	-13	-13	-	-	-

**) Pour les réducteurs doubles, si plusieurs valeurs avec « ** » sont mentionnées sur les dessins cotés, seule la valeur qui n'est pas entre parenthèses est en principe à prendre en considération. La valeur du tableau ci-dessous doit être ajoutée ou soustraite pour les types de réducteurs doubles correspondants.

Type	[mm]
SK 63 / 22, 23	4
SK 73 / 22, 23	-22
SK 73 / 32	-22
SK 6382 / 22	4
SK 7382 / 22	-22
SK 7382 / 32	-22
SK 9092.1 / 52	16
SK 9096.1 / 62	-13
SK 9096.1 / 63	-13

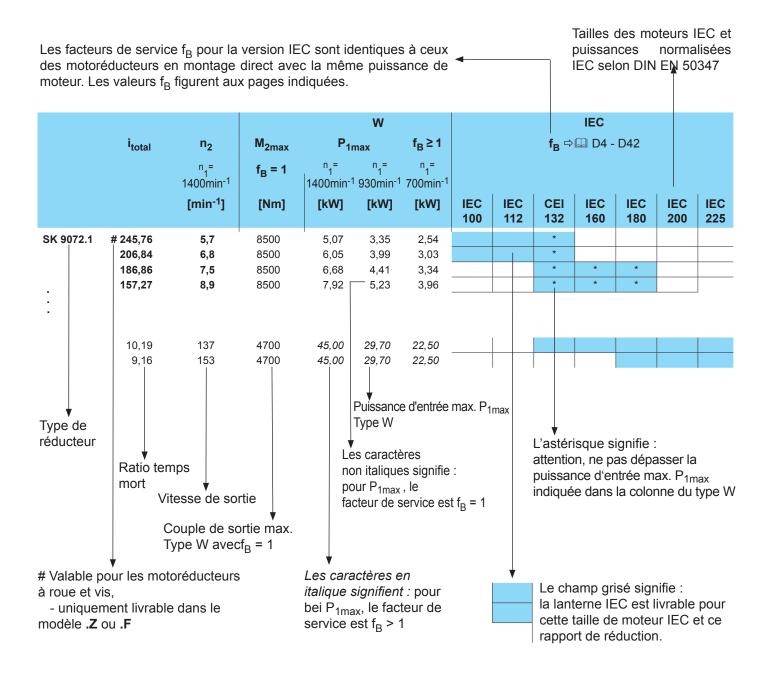
Tolérances

Arbres de sortie et d'entrée	Arbres creux	Arbre client	
Tolérance des arbres - ø (DIN 748) ø14 - ø 50 mm = ISO k6 > ø 50 mm = ISO m6	Tolérance des arbres creux - ø (DIN 748) selon ISO H7	Tolérance de la broche d'arbre du client selon ISO h6, avec un degré de choc « C » (voir tableau page A7) selon ISO k6.	
Trous taraudés selon DIN 332, feuille 2 = \emptyset 13 - \emptyset 16 \Rightarrow M5 > \emptyset 16 - \emptyset 21 \Rightarrow M6 > \emptyset 21 - \emptyset 24 \Rightarrow M8 > \emptyset 24 - \emptyset 30 \Rightarrow M10 > \emptyset 30 - \emptyset 38 \Rightarrow M12 > \emptyset 38 - \emptyset 50 \Rightarrow M16 > \emptyset 50 - \emptyset 85 \Rightarrow M20 > \emptyset 85 - \emptyset 130 \Rightarrow M24	Profil cannelé DIN 5480 9H	L = longueur de l'arbre de sortie DIN 5480 ajustement recommandé 8f Tolérance de la broche d'arbre du client pour frettes de serrage selon ISO h6 ou f6	
Clavettes selon DIN 6885, feuilles 1 et 3	Clavettes selon DIN 6885, feuilles 1 et 3 Clavettes selon DIN 6885, feuille		
* SK 9016.1	Arbre creux avec rainure selon DIN 6885, feuille 3		
Hauteur d'axe	Brides	Lanternes IEC et servo	
Hauteur d'axe « h » selon DIN 747	Tolérance du trou de fixation - ø (DIN 42 948)	Tolérance du trou de fixation - ø (DIN 42 948)	
	Tolérance du - ø (DIN 42 948) centrage de la bride ≤ ø 230 mm selon ISO j6 > ø 230 mm selon ISO h6	Tolérance du centrage de la bride selon ISO H7	
g1Bre kBre k1Bre k2Bre mBre nBre pBre qABre	Les dimensions relatives aux moteurs peuvent être dans certaines circonstances en partie modifiées. Filetage: Les filetages de fixation dans des pièces moulées, utilisables par le client (boîtier / lanterne de montage IEC) sont exécutés conformément à la norme DIN 13-1.	Les carters sont en alliage de fonderie. Les surfaces non usinées des carters peuvent donc varier légèrement des cotes nominales indiquées, selon les procédés de fabrication.	

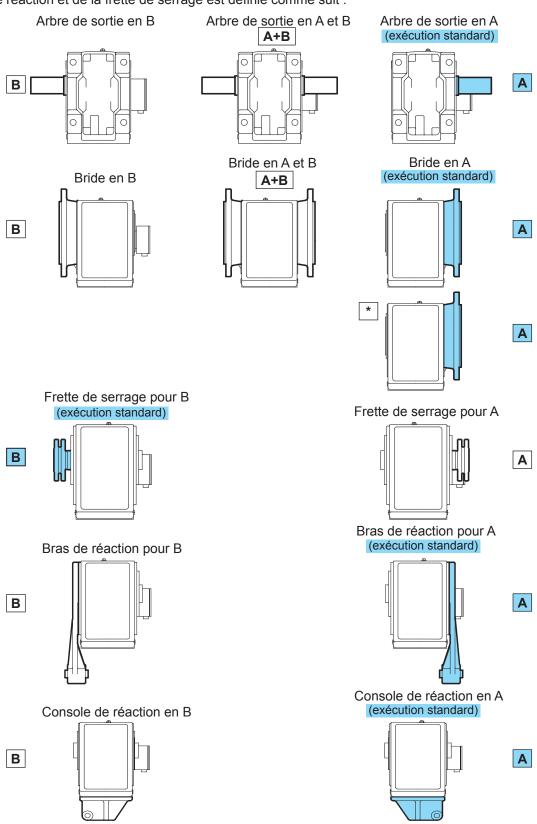

Abréviations dans les tableaux de sélection et de puissance

Abréviations	Description	Unité
f _B	Facteur de service (M _{2max} / M ₂)	
F _A ¹⁾	Effort axial autorisé côté sortie	[kN]
F _R ¹⁾	Effort radial autorisé côté sortie, application de la force au milieu de l'extrémité de l'arbre	[kN]
F _D	Pression exercée sur la butée caoutchouc	[N]
i _{total}	Rapport de réduction total	
z ₁	Nombre de filets	
z ₂ /z ₁	Rapport de réduction du réducteur à roue et vis	
i ₁	Rapport de réduction du réducteur à engrenages cylindriques	
M_2	Couple de sortie	[Nm]
M _{2max}	Couple de sortie maximum admissible	[Nm]
n ₂	Vitesse de sortie	[min ⁻¹]
P ₁	Puissance d'entrée du réducteur	[kW]
P _{1max}	Puissance d'entrée maximale	[kW]
VL	Palier renforcé	
η	Rendement	[%]
kg	Poids total du motoréducteur	[kg]
1)	Si le signe « - » apparaît dans les tableaux, alors aucun palier renforcé n'est possible.	

Structure des tableaux des puissances et des rapports de réduction pour les motoréducteurs


0,55 kW — Puissance du motoréducteur

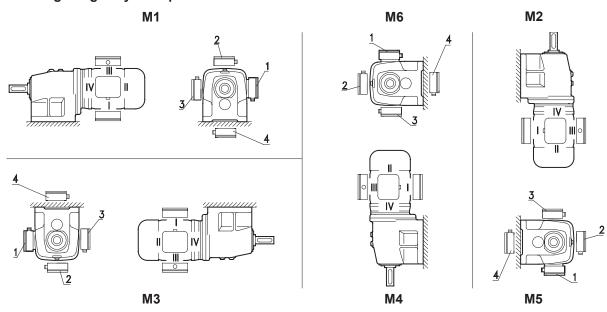
Structure des tableaux des puissances et des rapports de réduction pour W et IEC


SK 9072.1 — Type de réducteur

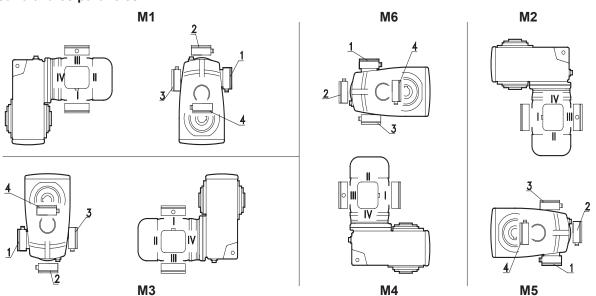
Position des arbres, brides, bras de réaction et frettes de serrage pour les réducteurs perpendiculaires

Pour les réducteurs à couple conique et les réducteurs à roue et vis*, la position de l'arbre de sortie, des brides B5, du bras de réaction et de la frette de serrage est définie comme suit :

Les définitions des côtés A et B se réfèrent à la position de montage M1. Informations supplémentaires sur les positions de montage M1 - M6 ⇒ □ A59


Boîte à bornes et entrée de câbles

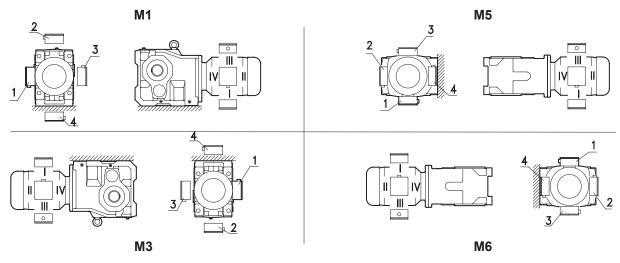
Exécution standard : boîte à bornes en 1 et entrée de câbles en l


Si vous souhaitez une autre configuration, veuillez la préciser lors de la commande. Pour une entrée de câbles en IV, veuillez nous consulter.

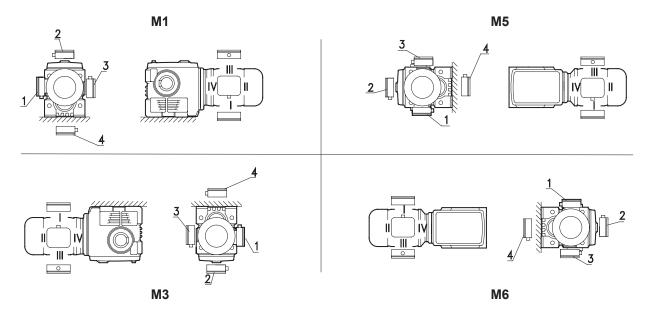
Pour les moteurs frein de taille 63 à 132, une entrée de câbles en I et III est standard.

Réducteur à engrenages cylindriques

Réducteur à arbres parallèles


Boîte à bornes et entrée de câbles

Exécution standard : boîte à bornes en 1 et entrée de câbles en l.

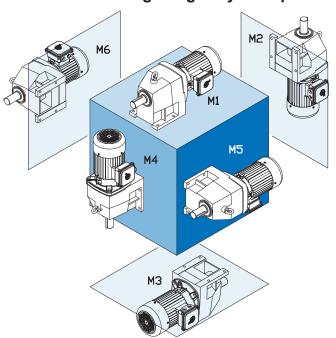

Si vous souhaitez une autre configuration, veuillez la préciser lors de la commande. Pour une entrée de câbles en IV, veuillez nous consulter.

Pour les moteurs frein de taille 63 à 132, une entrée de câbles en I et III est standard.

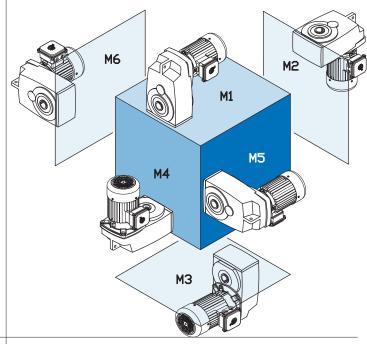
Réducteur à couple conique

Réducteur à roue et vis

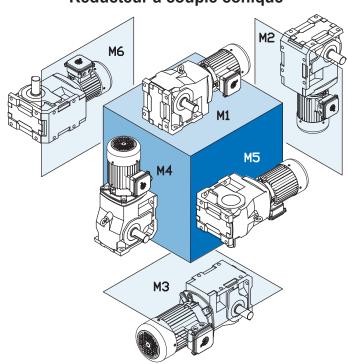
Informations supplémentaires sur les positions de montage M1 - M6 ⇒ □ A59

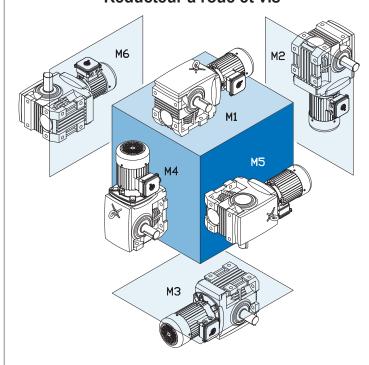


Positions de montage - spécificités

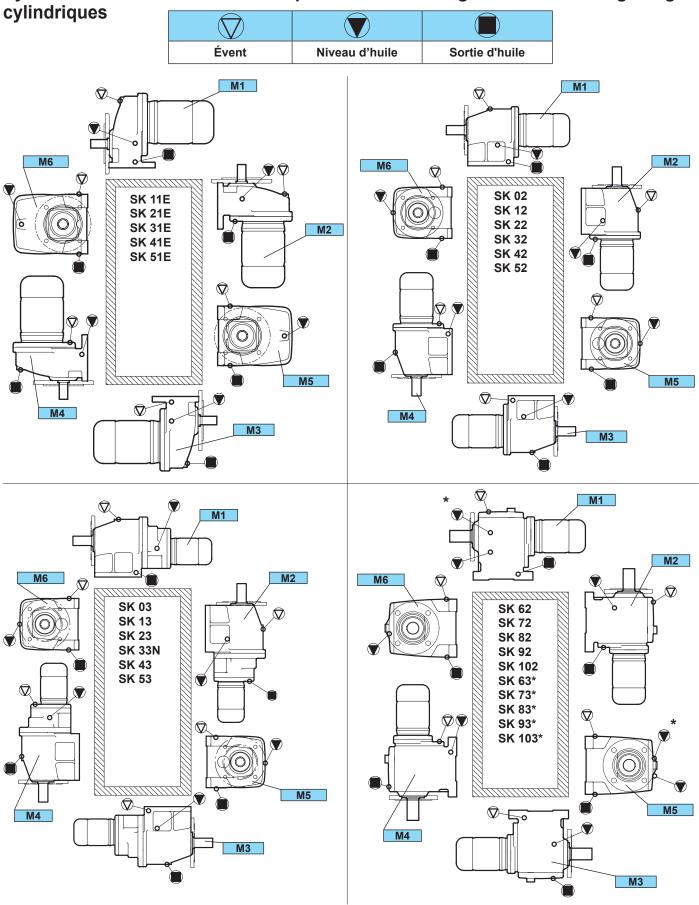

Dans le cas des réducteurs et motoréducteurs, Getriebebau NORD différencie six positions de montage de M1 à M6, tel que représenté dans les figures suivantes. La position de montage correspondante doit être indiquée lors de la commande. La modification de la position de montage après la livraison nécessite la correction de la quantité d'huile et fréquemment d'autres mesures, comme par ex. le montage des paliers à roulement à flasques. En cas de non-respect des mesures nécessaires, des dommages risquent de se produire. Des positions de montage orientées entre les 6 formes de base sont possibles, veuillez nous consulter.

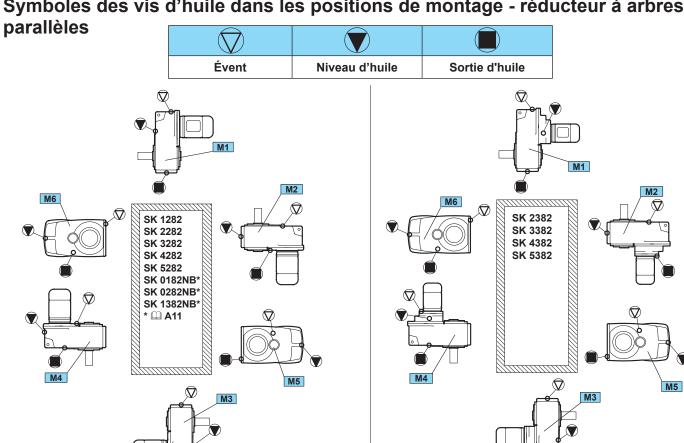
Les positions de montage, avec la position des vis de niveau d'huile, des vis d'évent et des vis de vidange, sont indiquées à partir de ⇒ △A60

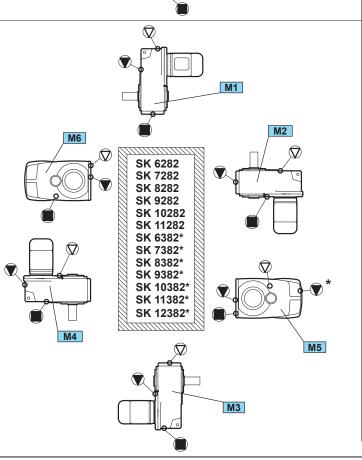

Réducteur à engrenages cylindriques


Réducteur à arbres parallèles

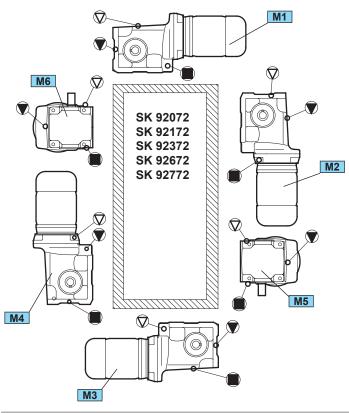
Réducteur à couple conique

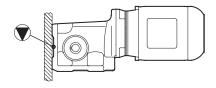

Réducteur à roue et vis


Symboles des vis d'huile dans les positions de montage - réducteur à engrenages

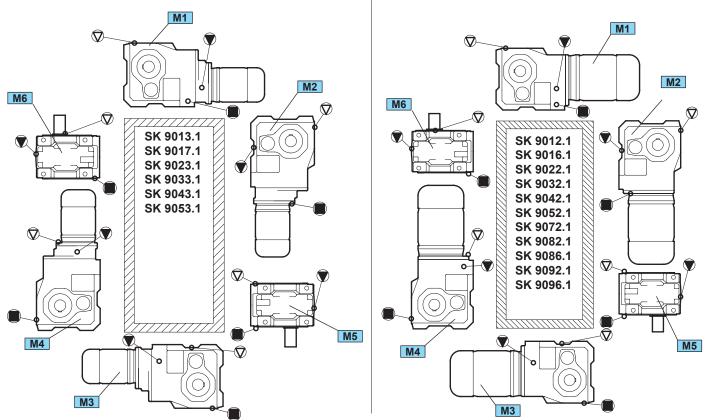


Symboles des vis d'huile dans les positions de montage - réducteur à arbres



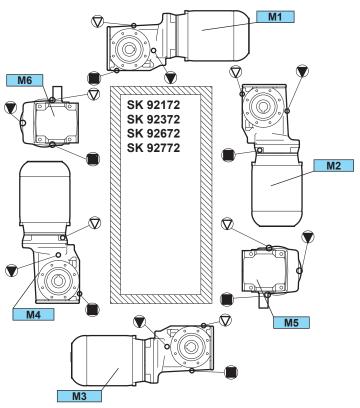

Symboles des vis d'huile dans les positions de montage - réducteur à couple

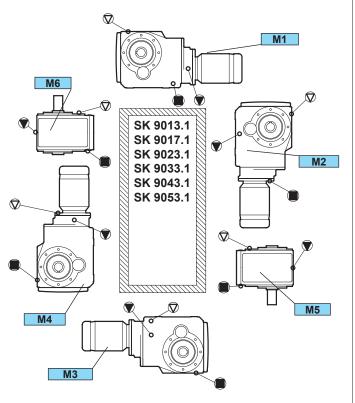
conique

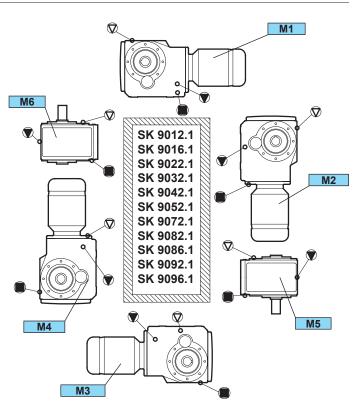

Évent	Niveau d'huile	Sortie d'huile
\bigcirc		

Version à pattes

Pour les réducteurs à couple conique **SK 92072 - SK 92772** avec carter à pattes, l'indicateur de niveau d'huile se trouve à l'avant (à l'opposé du moteur) dans le couvercle du carter, en position de montage M1. Si ce réducteur dans cette position de montage est fixé sur les surfaces verticales, veillez à ce que l'indicateur de niveau d'huile soit accessible. Celui-ci peut en effet être caché par la fixation.

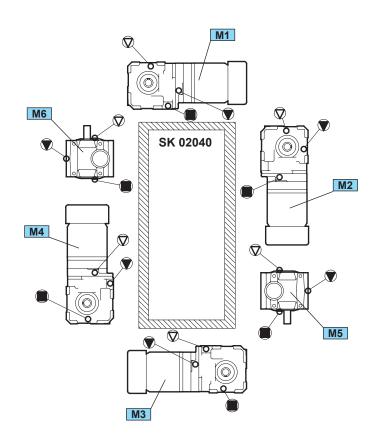



Symboles des vis d'huile dans les positions de montage - réducteur à couple


conique

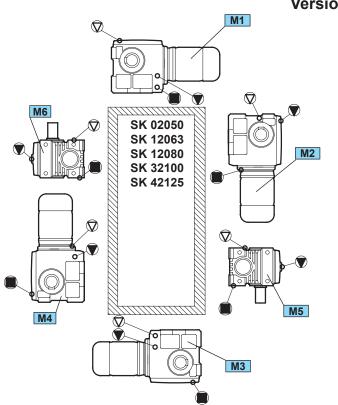
Évent Niveau d'huile Sortie d'huile

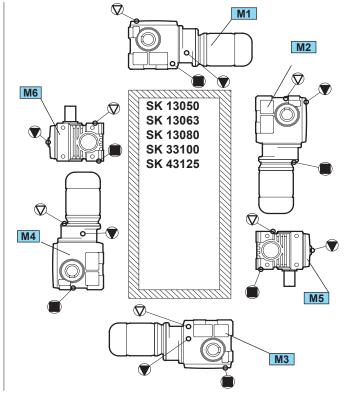
Version embrochable et à bride



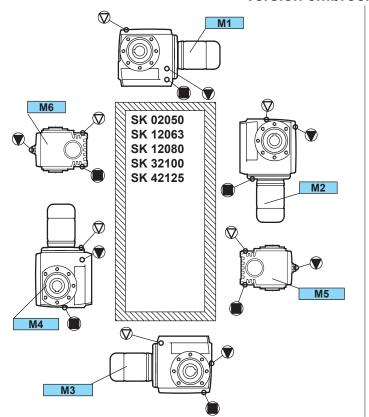
Symboles des vis d'huile dans les positions de montage - réducteur à roue et vis

\bigcirc		
Évent	Niveau d'huile	Sortie d'huile

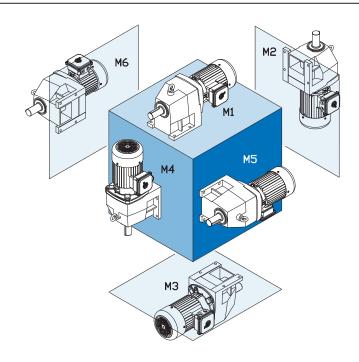




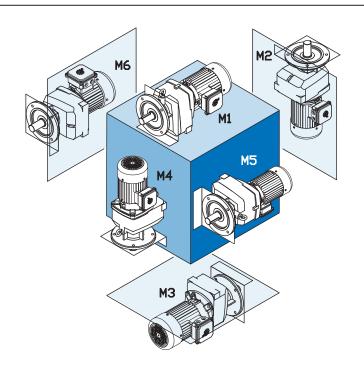
Symboles des vis d'huile dans les positions de montage - réducteur à roue et vis



Version à pattes

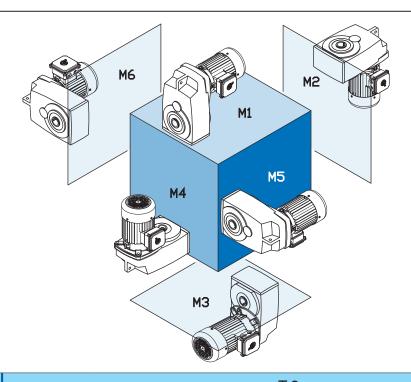

Version embrochable et à bride

Réducteur à engrenages cylindriques



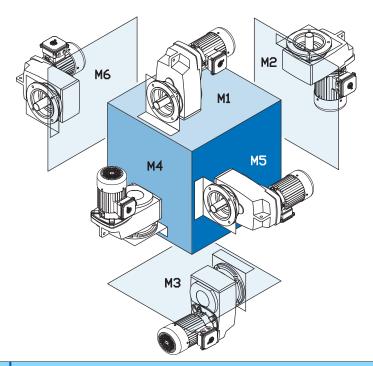
Туре		[L]						
		M1	M2	М3	M4	M5	M6	
_	SK 11E	0,25	0,50	0,65	0,50	0,40	0,40	
	SK 21E	0,60	1,20	1,30	1,00	1,00	1,00	
	SK 31E	1,10	2,00	2,20	1,70	1,50	1,50	
	SK 41E	1,60	2,60	3,30	2,80	2,30	2,30	
	SK 51E	1,80	3,50	4,10	4,00	3,80	3,80	
	SK 02	0,20	0,75	0,75	0,65	0,60	0,60	
Q ₂ (SK 12	0,25	0,80	0,85	0,75	0,55	0,55	
	SK 22	0,50	1,90	2,10	1,80	1,40	1,40	
	SK 32	0,90	2,50	3,10	3,10	2,00	2,00	
, L	SK 42	1,40	4,50	4,50	4,30	3,20	3,20	
	SK 52	2,50	7,00	6,80	6,80	5,10	5,10	
	SK 62	6,50	15,00	13,00	16,00	15,00	15,00	
	SK 72	10,00	23,00	18,00	26,00	23,00	23,00	
	SK 82	14,00	35,00	27,00	44,00	32,00	32,00	
	SK 92	25,00	73,00	47,00	76,00	52,00	52,00	
	SK 102	36,00	79,00	66,00	102,00	71,00	71,00	
	SK 03	0,35	1,20	0,80	1,00	0,70	0,70	
	SK 13	0,75	1,30	1,30	1,20	0,75	0,75	
	SK 23	1,20	2,00	1,90	2,40	1,60	1,60	
	SK 33N	1,75	3,00	3,40	4,00	2,30	2,30	
	SK 43	3,00	5,60	5,20	6,60	3,60	3,60	
	SK 53	4,50	8,70	7,70	8,70	6,00	6,00	
	SK 63	13,00	14,50	14,50	16,00	13,00	13,00	
	SK 73	20,50	20,00	22,50	27,00	20,00	20,00	
	SK 83	30,00	31,00	34,00	37,00	33,00	33,00	
	SK 93	53,00	70,00	59,00	72,00	49,00	49,00	
	SK 103	74,00	71,00	74,00	97,00	67,00	67,00	

Réducteur à engrenages cylindriques &



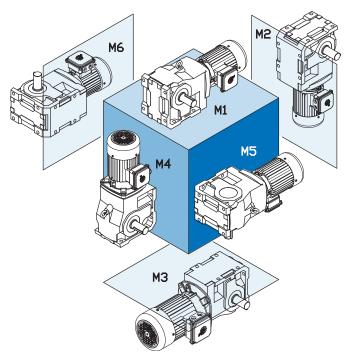
Тур	oe	[L]						
		M1	M2	М3	M4	M5	М6	
	SK 11EF	0,30	0,50	0,50	0,45	0,40	0,40	
	SK 21EF	0,70	1,40	1,40	1,40	1,00	1,00	
	SK 31EF	0,90	1,80	1,65	1,30	1,25	1,25	
	SK 41EF	1,20	2,30	2,70	2,00	1,90	1,90	
	SK 51EF	1,80	3,50	4,10	3,00	3,80	3,80	
	SK 02F	0,25	0,70	0,70	0,70	0,50	0,50	
- 9- 1	SK 12F	0,35	0,85	0,90	0,90	0,70	0,70	
	SK 22F	0,70	1,80	1,80	1,80	1,40	1,40	
	SK 32F	1,20	2,80	3,10	3,10	2,20	2,20	
	SK 42F	1,80	4,40	4,50	4,00	3,70	3,70	
	SK 52F	3,00	6,80	6,20	7,40	5,60	5,60	
	SK 62F	7,00	15,00	14,00	18,50	16,00	16,00	
	SK 72F	10,00	23,00	18,50	28,00	23,00	23,00	
	SK 82F	15,00	37,00	29,00	45,00	34,50	34,50	
	SK 92F	26,00	73,00	47,00	78,00	52,00	52,00	
	SK 102F	40,00	81,00	66,00	104,00	72,00	72,00	
	SK 03F	0,55	0,95	0,90	1,20	0,90	0,90	
0	SK 13F	1,00	1,30	1,30	1,20	1,00	1,00	
	SK 23F	1,40	2,60	2,30	2,80	2,80	2,80	
	SK 33NF	2,20	3,00	3,40	4,20	2,30	2,30	
	SK 43F	3,50	5,70	5,00	6,10	4,10	4,10	
	SK 53F	5,20	8,40	7,00	8,90	6,70	6,70	
	SK 63F	13,50	14,00	15,50	18,00	14,00	14,00	
	SK 73F	22,00	22,50	23,00	27,50	20,00	20,00	
	SK 83F	31,00	34,00	35,00	40,00	34,00	34,00	
	SK 93F	53,00	70,00	59,00	74,00	49,00	49,00	
	SK 103F	69,00	78,00	78,00	99,00	67,00	67,00	

Réducteur à arbres parallèles 💢 🥫


Ту	pe			\$	<u> </u>		
				נו	L]		
		M1	M2	М3	M4	M5	M6
	SK 0182NB	0,40	0,55	0,55	0,40	0,40	0,40
	SK 0282NB	0,70	1,10	0,80	1,10	0,90	0,90
	SK 1382NB	1,40	2,30	2,20	2,20	2,00	2,00
	SK 1282	0,95	1,30	0,90	1,30	1,00	1,00
	SK 2282	1,70	2,30	1,70	2,20	1,90	1,90
	SK 3282	2,80	4,00	3,30	3,80	3,00	3,00
	SK 4282	4,20	5,40	4,40	5,00	4,20	4,20
	SK 5282	7,50	8,80	7,50	8,80	7,20	7,20
	SK 2382	2,30	2,70	2,10	3,20	2,00	2,00
	SK 3382	3,80	4,30	3,00	5,50	3,00	3,00
	SK 4382	6,10	6,90	4,90	8,40	5,00	5,00
	SK 5382	12,50	12,00	6,70	14,00	8,30	8,30
	SK 1382	1,45	1,60	1,15	1,70	1,10	1,10
	SK 6282	17,00	15,50	12,50	17,50	11,00	14,00
	SK 7282	25,50	21,00	20,50	27,00	16,00	21,00
	SK 8282	37,50	33,00	30,50	44,00	31,00	31,00
	SK 9282	74,50	70,00	56,00	80,00	65,00	59,00
	SK 6382	16,00	13,00	10,00	18,00	14,00	12,50
	SK 7382	22,00	21,00	16,00	25,00	23,00	22,00
=()()	SK 8382	34,50	32,50	25,00	38,00	35,00	30,00
	SK 9382	73,50	70,00	43,00	74,50	65,00	60,00
PP							
	SK 10282	90,00	90,00	40,00	90,00	60,00	82,00
	SK 11282*	165,0	160,0	145,0	195,0	100,0	140,0
	SK 10382	85,00	100,0	73,00	100,0	80,00	80,00
	SK 11382*	160,0	155,0	140,0	210,0,0	155,0	135,0
	SK 12382*	160,0	155,0	140,0	210	155,0	135,0

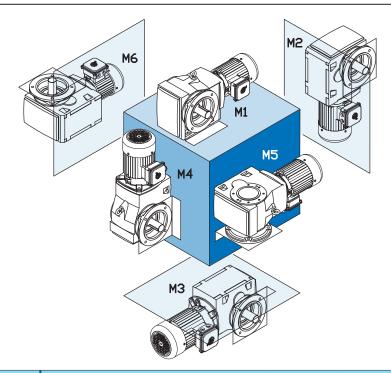
* ⇒ □ A47

Réducteur à arbres parallèles 🖔


Ту	pe			8	<u></u>		
		M1	M2	M3	L] M4	M5	M6
	SK 0182NB/.F	0,40	0,55	0,55	0,40	0,40	0,40
	SK 0282NB/.F	0,70	1,10	0,80	1,10	0,90	0,90
	SK 1382NB/.F	1,40	2,30	2,20	2,20	2,00	2,00
	SK 1282.F	0,95	1,30	0,90	1,30	1,00	1,00
	SK 2282.F	1,70	2,30	1,70	2,20	1,90	1,90
	SK 3282.F	2,80	4,00	3,30	3,80	3,00	3,00
	SK 4282.F	4,20	5,40	4,40	5,00	4,20	4,20
	SK 5282.F	7,50	8,80	7,50	8,80	7,20	7,20
80 0-	SK 2382.F	2,30	2,70	2,10	3,20	2,00	2,00
	SK 3382.F	3,80	4,30	3,00	5,50	3,00	3,00
	SK 4382.F	6,10	6,90	4,90	8,40	5,00	5,00
	SK 5382.F SK 1382.F	12,50	12,00	6,70	14,00	8,30	8,30
		1,45	1,60	1,15	1,70	1,10	1,10
67 67 m	SK 6282.F	17,00	15,50	12,50	17,50	11,00	14,00
	SK 7282.F	25,50	21,00	20,50	27,00	16,00	21,00
	SK 8282.F	37,50	33,00	30,50	44,00	31,00	31,00
	SK 9282.F	74,50	70,00	56,00	80,00	65,00	59,00
	SK 6382.F	16,00	13,00	10,00	18,00	14,00	12,50
	SK 7382.F	22,00	21,00	16,00	25,00	23,00	22,00
	SK 8382.F	34,50	32,50	25,00	38,00	35,00	30,00
	SK 9382.F	73,50	70,00	43,00	74,50	65,00	60,00
	SK 10282.F SK 11282.F*	90,00 165,0	90,00 160,0	40,00 145,0	90,00 195,0	60,00 100,0	82,00 140,0
PP	SK 10382.F	85,00	100,0	73,00	100,0	80,00	80,00
	SK 11382.F*	160,0	155,0	140,0	210,0,0	155,0	135,0
	SK 12382.F*	160,0	155,0	140,0	210	155,0	135,0

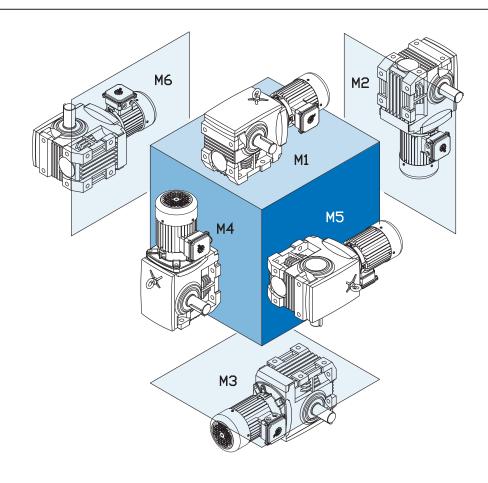
* ⇒ **□**A47

Réducteur à couple conique



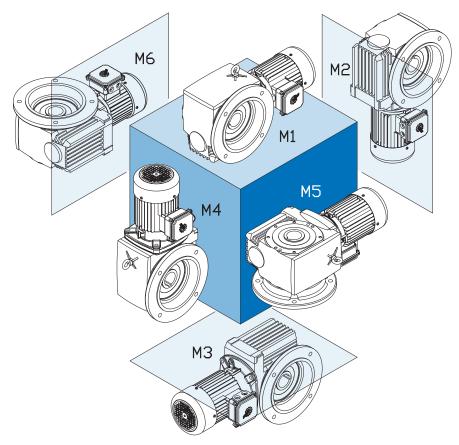
Туре				[1]	- ↑		
		M1	M2	М3	М4	M5	M6
	SK 92072	0,40	0,60	0,50	0,55	0,40	0,40
	SK 92172	0,60	0,90	1,00	1,10	1,10	0,80
	SK 92372	0,90	1,60	1,50	1,90	1,50	0,90
	SK 92672	1,80	3,50	3,60	3,40	2,60	2,60
	SK 92772	2,30	4,50	4,60	5,30	4,10	4,10
	SK9x072.1	0,39	0,93	0,79	1,02	0,49	0,62
	SK9x172.1	0,60	1,17	0,94	1,37	0,65	0,85
	SK9x372.1	1,00	1,97	1,65	2,14	1,12	1,34
	SK9x672.1	1,80	3,23	2,71	4,20	2,02	2,45
	SK9x772.1	2,72	4,63	3,70	5,40	2,93	3,25
	SK 9012.1	0,70	1,70	1,90	2,10	1,10	1,50
	SK 9016.1	0,70	1,70	1,90	2,10	1,10	1,50
	SK 9022.1	1,30	2,90	3,30	3,80	1,70	2,80
	SK 9032.1	1,80	5,40	6,10	6,80	3,00	4,60
	SK 9042.1	2,70	9,00	10,00	10,70	5,20	7,70
	SK 9052.1	6,50	16,00	19,00	21,50	11,00	15,50
	SK 9072.1	10,00	27,50	32,00	36,00	18,00	24,00
	SK 9082.1	17,00	51,50	62,50	71,50	33,00	46,50
	SK 9086.1	29,00	73,00	85,00	102,00	48,00	62,00
	SK 9092.1	41,00	157,00	170,00	172,00	80,00	90,00
	SK 9096.1	70,00	187,00	194,00	254,00	109,00	152,00
	SK 9013.1	1,35	2,10	2,15	2,75	1,00	1,80
	SK 9017.1	1,30	2,00	2,10	2,70	1,00	1,70
	SK 9023.1	2,20	3,20	3,60	4,70	2,20	2,90
	SK 9033.1	3,10	5,70	6,30	8,00	3,40	4,80
	SK 9043.1	5,00	10,10	11,00	13,30	5,70	8,10
	SK 9053.1	10,00	17,00	20,00	24,50	11,50	16,50

Réducteur à couple conique 🖔



Туре				ا]	<u>-</u> -]		
		M1	M2	М3	M4	M5	M6
	SK 92072	0,40	0,60	0,55	0,55	0,40	0,40
	SK 92172	0,50	1,00	0,90	1,05	0,90	0,60
	SK 92372	1,20	1,60	1,50	1,90	1,30	1,30
	SK 92672	1,60	2,80	2,50	3,30	2,40	2,40
	SK 92772	2,80	4,40	4,50	5,50	3,50	3,50
	SK9x072.1	0,39	0,93	0,79	1,02	0,49	0,62
	SK9x172.1	0,60	1,17	0,94	1,37	0,65	0,85
	SK9x372.1	1,00	1,97	1,65	2,14	1,12	1,34
	SK9x672.1	1,80	3,23	2,71	4,20	2,02	2,45
	SK9x772.1	2,72	4,63	3,70	5,40	2,93	3,25
	SK 9012.1	1,00	1,90	1,90	2,20	1,20	1,70
	SK 9016.1	1,00	1,90	1,90	2,20	1,20	1,70
	SK 9022.1	1,60	3,50	3,50	4,20	2,30	2,80
	SK 9032.1	2,10	4,80	6,40	7,10	3,30	5,10
	SK 9042.1	4,50	10,00	10,00	11,50	6,50	8,20
	SK 9052.1	7,50	16,50	20,00	23,50	11,50	18,00
	SK 9072.1	12,00	27,50	33,00	38,50	19,00	26,00
	SK 9082.1	21,00	54,00	66,00	80,00	38,00	52,00
	SK 9086.1	36,00	78,00	91,00	107,00	53,00	76,00
	SK 9092.1	40,00	130,00	154,00	175,00	82,00	91,00
	SK 9096.1	80,00	187,00	193,00	257,00	113,00	156,00
	SK 9013.1	1,45	2,30	2,10	2,80	1,05	1,80
	SK 9017.1	1,45	2,30	2,10	2,80	1,05	1,80
	SK 9023.1	2,30	3,50	3,80	5,30	2,20	3,40
	SK 9033.1	3,70	5,70	6,70	8,60	3,60	5,30
	SK 9043.1	6,50	10,50	11,90	14,70	6,70	9,30
	SK 9053.1	13,00	18,00	21,50	26,50	13,00	17,00

Réducteur à roue et vis



Туре				8	L]		
		M1	M2	М3	M4	M5	M6
	SK 02040	0,40	0,80	0,75	0,65	0,50	0,50
	SK 02050	0,40	1,40	1,10	1,30	0,70	0,70
	SK 12063	0,60	1,80	1,20	1,60	1,00	1,00
	SK 12080	0,90	3,10	2,40	3,00	1,80	1,80
	SK 32100	1,50	6,30	5,60	5,50	3,60	3,60
	SK 42125	2,80	11,80	10,20	10,00	6,20	6,20
	SK 13050	0,75	1,75	1,30	1,75	0,75	0,75
	SK 13063	1,00	2,30	1,50	2,20	1,10	1,10
	SK 13080	1,70	3,50	3,50	3,50	2,00	2,00
	SK 33100	2,40	6,40	5,40	6,50	3,40	3,40
	SK 43125	4,25	13,00	10,50	13,50	7,20	7,20

Réducteur à roue et vis 🖔

Туре				3	다 LJ		
		M1	M2	М3	M4	M5	M6
	SK 02040	0,40	0,70	0,65	0,65	0,55	0,55
Q	SK 02050	0,40	1,50	1,25	1,20	0,90	0,75
Pina?	SK 12063	0,50	1,95	1,70	1,75	1,20	0,95
	SK 12080	0,90	3,70	3,20	3,40	2,50	2,30
	SK 32100	1,40	6,30	6,10	6,10	4,00	3,60
	SK 42125	3,00	11,50	11,50	11,00	8,40	7,30
	SK 02040	0,40	0,70	0,65	0,65	0,55	0,55
	SK 02050	0,45	1,40	1,15	1,10	0,75	0,75
	SK 12063	0,55	1,85	1,60	1,60	1,10	1,10
	SK 12080	0,80	3,10	3,20	2,80	1,80	1,80
	SK 32100	1,50	6,50	5,60	5,30	4,00	4,00
	SK 42125	3,00	12,50	10,80	10,80	6,50	6,50
_	SK 13050	0,75	1,80	1,50	1,70	1,05	0,90
	SK 13063	1,00	2,30	1,90	2,20	1,35	1,10
	SK 13080	1,60	3,80	3,50	3,90	2,70	2,50
	SK 33100	2,65	7,20	6,40	7,60	4,30	3,80
	SK 43125	4,70	15,00	13,00	16,00	9,00	7,70
<u></u>	SK 13050	0,90	1,80	1,30	1,65	1,30	1,30
	SK 13063	1,05	2,10	1,80	2,10	1,40	1,40
	SK 13080	1,60	3,60	2,90	3,75	2,00	2,00
	SK 33100	2,60	6,00	5,80	6,50	3,50	3,50
	SK 43125	4,60	13,60	11,40	14,30	7,60	7,60

Peinture

Туре	Exécution	TFD [μm]	TFD total [μm]	EN 12944 Cat. corr.	Application recommandée
F1	1 x 1-K apprêt primaire, rouge-brun (pièces de fonderie)	40	60 100		Pour une peinture de
	et 1 x 2-K apprêt polyuréthane (2-K-PUR)	60	60-100		finition par le client
F2 Série	1 x 1-K apprêt primaire, rouge-brun (pièces de fonderie)	40	50-90	C2	Pour montage intérieur
Serie	und 1 x 2-K peinture de finition polyuréthane (2-K-PUR)HS	50	50-90	02	
F3.0	1 x 1-K apprêt primaire, rouge-brun (pièces de fonderie) et	40			Pour montage intérieur et extérieur protégé avec
	1 x 2-K apprêt polyuréthane (2-K-PUR)	60	110-150	C2	de faibles agressions environnementales, p. ex.
	et 1 x 2-K peinture de finition polyuréthane (2-K PUR)HS	50			hangar ouvert non chauffé
F3.1	1 x 1-K apprêt primaire, rouge-brun (pièces de fonderie) et	40			Pour montage extérieur, en milieu urbain ou industriel
	1 x 2-K apprêt polyuréthane (2-K-PUR) et	60	160-200	C3	avec de faibles agressions environnementales
	2 x 2-K peinture de finition polyuréthane (2-K PUR)HS	2x50			environnementales
F3.2	1 x 1-K apprêt primaire, rouge-brun (pièces de fonderie) et	40			Pour montage extérieur, en milieu urbain ou industriel
	2 x 2-K apprêt polyuréthane (2-K-PUR) et	2x60	210-250	C4	avec des agressions environnementales
	2 x 2-K peinture de finition polyuréthane (2-K PUR)HS	2x50			moyennes
F3.3	1 x 1-K apprêt primaire, rouge-brun (pièces de fonderie) et	40			Pour montage extérieur, en milieu urbain ou industriel
	2 x 2-K apprêt EP phosphate de zinc et	2x50	200-240	C5	avec de fortes agressions environnementales
	2 x 2-K peinture de finition polyuréthane (2-K PUR)HS	2x50			CHVIIOIIICITICITICICS
F3.4	1 x 1-K apprêt primaire, rouge-brun (pièces de fonderie) et	40			Pour de fortes agressions chimiques
	1 x 2-K apprêt EP phosphate de zinc et	50	100-140		ommiques.
	1 x couche de finition ALEXIT résistant aux produits chimiques	50			
F3.5	1 x 1-K apprêt primaire, rouge-brun (pièces de fonderie) et	40			Machines pour l'emballage dans un
	1 x 2-K apprêt EP phosphate de zinc et	50	100-140		milieu agro-alimentaire
	1 x ALEXIT Coating	50			
A	Revêtement antimicrobien supplémentaire pour toutes les peintures à l'exception de F3.4 et F3.5	25			
Z	Égalisation et remplissage des plans de joints et autres ave	c une pâte	e à base de	polyuréthar	ne

¹⁻K = mono-composant, 2-K = bi-composants, TFD = épaisseur du film sec, env. [μ m], HS = high solids

ANNEXE

Formulaires généraux	F2
Vue d'ensemble des moteurs	F4

www.nord.com

Formulaire

Formulaire général

_		_		

	NORD RALL CONTRACTOR C
Entreprise	NORD Réducteurs - Bureaux commerciaux 17 Ave. Georges Clémenceau
Rue	FR-93421 Villepinte Cedex Tél +33.14963 0189
Ville Code postal	Fax +33.14963 0811 E-Mail info@nord-fr.com www.nord.com
Contact	(www.nord.com/locator)
Tél.	N° client
Fax	Application
E-mail	Projet
Composants nécessaires	
○ Motoréducteur ○ Réducteur avec IEC ○ Réducteur avec IEC	éducteur avec bout d'arbre libre
Quantité	Туре
Paramètres spécifiques au réducteur Rapport de	Paramètres spécifiques au réducteur Roulement Onormal OVL OVL2 OVL3 OAL
Type réduction i	Pour réducteurs à couples coniques ou à roue et vis Arbre OA OB
Bride OB14 OB5 ø [mm]	
○ Arbre creux ○ Arbre plein ø x [mm]	Types d'huile Types d'huile spéciaux
Vitesse de sortie n ₂ [min ⁻¹	Paramètres spécifiques au moteur
Couple de sortie M ₂ [Nm]	Puissance nominale [kW]
Facteur de service minimal f _b	Vitesse du moteur n ₁ [min ⁻¹]
Durée de vie minimale des roulements Lh [h]	Sonde de température (CTP) O Sonde thermique bilame O
Efforts radiaux sur l'arbre de sortie F _{R2} [N]	Tension réseau [V] +/- [%]
Distance entre épaulement de l'arbre et point d'application de la force [mm]	Fréquence réseau [Hz]
Efforts axiaux sur l'arbre de sortie F _{A2} [N]	Page 1 sur 2

Formulaire

Formulaire général

Paramètres spécifiques au moteur	Conditions				
Classe d'isolement F ⊠	Températures ambiantes de à [°C]				
Type de protection	Avec butée pour mouvements [Nm]				
Type de fonctionnement \bigcirc S1 (Standard) \bigcirc S [%]	Humidité de l'air relative [%]				
Fréquence de démarrage [c/h]	Rayonnement solaire direct				
Durée de fonctionnement relative [%]	Milieux agressifs (par ex. air salé)				
Position de Position entrée	Altitude de l'installation [m]				
boîtes à bornes de câbles	Précipitations				
Paramètres spécifiques au freinage					
Couple de freinage nominal [Nm]	ATEX (mélanges explosifs dans l'environnement) Zone				
Tension de freinage nominale [V]	Peinture O Sans peinture				
	Peinture 1.0 - primaire				
○ Frein d'arrêt / frein d'urgence ○ Frein de travail	Peinture 2.0 - standard				
Fonctionnement du variateur de fréquence	Peinture 3.0 - variations climatiques normales				
O Variateur en armoire O Variateur monté sur moteur	Peinture 3.1 - variations climatiques moyennes				
Plage de variation de [Hz] à [Hz]	Peinture 3.2 - fortes variations climatiques				
Couple constant dans la zone de variation [Nm]	Autre peinture (par ex. : Z, 3.4 ou 3.5)				
☐ Ventilation forcée	Couleur spéciale (Standard RAL7031) RAL				
Augmentation de la taille du moteur (dans le cas d'un couple constant)	Veuillez indiquer les directives DIN EN, etc.				
·	Conditions générales				
CODEUR Incrémental Absolu	Offre valable jusqu'au				
Retour vitesse de rotation	Conditions d'achat connues O non connues O				
Fonctionnement en mode générateur, puissance récupérée [kW]	Conditions d'achat jointes				
Système de bus Nom du bus	Délai de livraison après réception de la commande				
☐ Commande via ☐ Ordinateur ☐ Console de commande	Livraison franco de port				
Remarques					

Page 2 sur 2

Vue d'ensemble des moteurs

La vue d'ensemble des moteurs est un extrait du catalogue des moteurs M7000 IE1 IE2 IE3

Le catalogue des moteurs M7000 IE1 IE2 IE3 est disponible sur le site Internet **NORD** à la page <u>www.nord.com</u> - Rubrique **DOCUMENTATION**.

1500 1/min 50 Hz 230/400 V / 400/690V - S1

IE2

	Р	n	M _N	I _N		cos	η						L PA	L WA	J
Туре				230/400 V	400/690 V	φ	1/2 charge	3/4 charge	4/4 charge	M _A / M _N	M _K / M _N	I _A / I _N			
	[kW]	[1/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[db(A)]	[db(A)]	[kgm²]
63 S/4	0,12	1335	0,86	0,95/0,55		0,64			49,9	2,7	2,7	2,9	40	52	0,00021
63 L/4	0,18	1360	1,26	1,18/0,68		0,64			56,2	2,5	2,6	3,3	40	52	0,00028
71 S/4	0,25	1380	1,73	1,32/0,76		0,77			61,6	2,2	2,1	3,3	45	57	0,00072
71 L/4	0,37	1380	2,56	1,89/1,09		0,71			64,4	2,0	2,4	3,6	45	57	0,00086
80 SH/4	0,55	1420	3,73	2,44/1,41	1,41/0,81	0,70	77,7	80,7	80,8	3,1	3,2	5,1	47	59	0,0014
80 LH/4	0,75	1415	5,06	3,05/1,76	1,76/1,02	0,75	81,6	83,0	82,4	3,0	3,1	5,2	47	59	0,0019
90 SH/4	1,1	1435	7,32	4,19/2,42	2,42/1,4	0,80	80,9	82,0	81,8	3,1	3,5	6,1	49	61	0,0034
90 LH/4	1,5	1415	10,1	5,8/3,34	3,34/1,93	0,79	81,3	82,4	82,8	3,3	3,5	5,8	49	61	0,0039
100 LH/4	2,2	1445	14,5	8,1/4,65	4,65/2,68	0,79	85,2	86,7	86,6	3,7	4,3	7,3	51	64	0,0075
100 AH/4	3	1425	20,3	11,4/6,59	6,59/3,8	0,77	86,4	86,7	85,6	3,1	3,5	6,3	54	66	0,0075
112 MH/4	4	1440	26,6	13,9/8,02	8,02/4,63	0,83	87,4	87,6	86,7	3,1	3,6	7,5	54	66	0,014
132 SH/4	5,5	1460	36,0	18,5/10,7	10,7/6,18	0,84	87,6	88,5	88,2	3,1	3,5	7,5	60	73	0,032
132 MH/4	7,5	1460	49,1	26/15	15/8,7	0,81	88,5	89,5	89,3	3,3	3,9	7,5	60	73	0,035
132 LH/4	9,2	1450	60,6	34,0/19,6	19,6/11,3	0,77	87,6	89,7	89,3	3,4	3,8	7,4	60	73	0,035
160 SH/4	9,2	1465	59,8	29,4/17	17/9,8	0,87	90,3	90,9	90,5	3,3	3,6	8,2	66	78	0,067
160 MH/4	11	1465	71,7	35,7/20,6	20,6/11,9	0,86	90,8	91,3	91,2	2,9	3,4	7,4	66	78	0,067
160 LH/4	15	1465	97,8	47,6/27,5	27,5/15,9	0,87	91,7	92,4	92,0	3,0	3,5	7,9	66	78	0,092
180 MH/4	18,5	1475	120	59,9/34,6	34,6/20,0	0,84	92,2	92,6	92,2	2,9	3,2	7,7	62	75	0,13
180 LH/4	22	1475	143	69,8/40,3	40,3/23,3	0,86	92,7	92,9	92,2	2,8	3,1	7,7	62	75	0,16
200 XH/4	30,0	1470	195	102/59	59/34,1	0,80	92,8	92,8	92,4	2,8	3,1	7,1	62	75	0,16
200 LH/4	30,0	1465	196		54,0/31,5	0,87	91,5	92,7	92,3	3,0	3,2	7,0	65	78	0,32
225 SH/4	37,0	1480	239		68,0/39,0	0,85	91,3	93,1	92,7	2,7	3,0	6,8	60	73	0,40
225 MH/4	45,0	1480	290		82,0/47,0	0,85	91,6	93,3	93,1	2,8	3,0	6,9	60	73	0,49
250 MH/4	55,0	1485	354		98,0/57,0	0,87	92,0	93,7	93,5	2,6	3,0	7,5	65	78	0,86
280 SH/4	75,0	1485	482		132/76,0	0,87	92,5	94,1	94,0	2,5	2,9	6,8	67	80	1,40
280 MH/4	90,0	1486	578		160/92,0	0,86	92,7	94,3	94,2	2,7	3,1	7,5	68	82	1,70
315 SH/4	110	1488	706		193/111	0,87	93,0	94,6	94,5	2,7	2,9	7,1	68	82	2,30
315 MH/4	132	1488	847		230/133	0,88	93,2	94,8	94,7	2,7	2,9	7,3	69	83	2,90
315 RH/4	160	1490	1026		275/159	0,88	93,4	95,0	94,9	3,0	3,0	7,4	69	83	3,50
315 LH/4	200	1490	1282		345/199	0,88	93,6	95,2	95,1	3,2	3,0	7,6	69	83	4,20

Extraits du programme NORD

G1000 Vitesses constantes Carter MONOBLOC 60 Hz

- Motoréducteurs à engrenages cylindriques
- Motoréducteurs à arbres parallèles
- Motoréducteurs à engrenages coniques
- Motoréducteurs à roue et vis

G1012 NORDBLOC 50 Hz

Motoréducteurs à engrenages cylindriques

G1050 Réducteurs industriels NORDBLOC

G1001 Entraînements protégés contre les explosions

Catégorie 2G, zone 1, gaz

G1022 Entraînements protégés contre les explosions

- Catégorie 3D, zone 22, poussière

F3020 Variateurs de fréquence SK200E

F3050 Variateurs de fréquence SK500E

F3070 Variateurs de fréquence NORD SK700E

- NORD Réducteurs, 17 Ave. Georges Clémentceau, 93421 Villepinte Cedex, France Tel : N° Indigo 0 820 000 409, Fax : N° Indigo 0 820 000 836, info@nord-fr.com
- CH Getriebebau NORD AG, Bächigenstraße 18, CH-9212 Arnegg, Suisse Fon +41-71-38899 11, Fax +41-71-38899 15, info@nord-ch.com
- NORD Gear Limited, 41 West Drive, Brampton, ON L6T 4A1, Canada Fon +1-800-668-4378, Fax +1-905-796-8130, info@nord-ca.com
- BE NORD Aandrijvingen Belgie N.V NORD Transmission SA, Boutersemdreef 24, 2240 Zandhoven, België Fon +32-3-484 59 21, Fax +32-3-484 59 24, info@nord-be.com
- NORD Aandrijvingen Nederland B.V., Voltstraat 12, B.O. Box 136, 2181 HA Hillegom, Nederland Fon +31-252 529544, Fax +31-252 522222, info@nord-nl.com

